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Abstract

In the analysis of a multi-state process with a finite number of states, a semi-Markov model allows

to weaken the often used Markov assumption. The behavior of the process is defined through the

initial probabilities on the set of possible states, the direct transition probabilities from any state

to any other state and the sojourn times distributions as functions of the actual state and the state

reached from there at the end of the sojourn. The most usual model in this framework is the so-

called independent competing risk model. Then the transition probabilities can be deduced from the

distribution of the sojourn times. For both cases, this submodel and the general one, we propose

estimators of the transition probabilities and the distribution functions of the sojourn times when n

i.i.d. sample paths of the process are observed under right-censoring. A comparison of the estimators

allows us to test for an ICR model against the general semi-Markov model and a simulation study is

performed.

1 Introduction

The motivation for this paper is the analysis of a cohort of patients where not only the survival time of

the patients but also a finite number of life states are under study. The behavior of the process is assumed

to be semi-Markov in order to weaken the very often used, and often too restrictive, Markov assumption.

The behavior of such a process is defined through the initial probabilities on the set of possible states, and

the transition functions defined as the probabilities, starting from any specified state, to reach another

state within a certain amount of time. In order to define this behavior, the set of the transition functions

may be replaced by two sets. The first one is the set of direct transition probabilities pjj′ from any state

j to any other state j′. The second one is the set of the sojourn times distributions F|jj′ as functions of

the actual state j and the state j′ reached from there at the end of the sojourn (section 2).
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‡Université de Caen, IUT, 14 000 Lisieux, France

1



The most usual model in this framework is the so-called competing risk model. This model may be

viewed as one where, starting in a specific state j, all states that may be reached directly from j are

in competition: the state j′ with the smallest random time Wjj′ to reach it from j will be the one. It

is well known that the joint distribution and the marginal distribution of the latent sojourn times Wjj′

is not identifiable in a general competing risk model (Tsiatis (1975)). In a semi-Markov model as well

as in a competing risk model, only the sub-distribution functions Fj′|j = pjj′F|jj′ are identifiable and it

is always possible to define an independent competing risk (ICR) model by assuming that the variables

Wjj′ , j′ = 1, . . . ,m, are independent with distributions F|jj′ = Fj′|j/Fj′|j(∞). Without an assumption

about their dependence, their joint distribution is not identifiable and a test of an ICR model against an

alternative of a general competing risk model is not possible. Similarly, there is always a representation

of any general semi-Markov model as a competing risk model with possibly dependent Wjj′ but it is

not uniquely defined. When the random variables Wjj′ , j′ ∈ J(j), are assumed to be independent, the

semi-Markov model simplifies : the transition probabilities can be deduced from the laws of the sojourn

times Wjj′ (section 3). As the term ”competing risk” is also used in case of dependence of the Wjj′ , we

shall sometimes emphasize the independence we always assume in a competing risk model, by calling it

the Independent Competing Risk (ICR) model.

For a general right-censored semi-Markov process, Lagakos, Sommer and Zelen (1978) proposed a

maximum likelihood estimator for the direct transition probabilities and the distribution functions of

the sojourn times, under the assumption of a discrete function with a finite number of jumps. In non-

parametric models for censored counting processes, Gill (1980), Voelkel and Crowley (1986) considered

estimators of the sub-distribution functions Fj′|j = pjj′F|jj′ and they studied their asymptotic behavior.

Here, we consider maximum likelihood estimation for the general semi-parametric model defined by the

probabilities pjj′ and the hazard functions related to the distribution functions F|jj′ (section 4). If the

mean number of transitions by an individual tends to infinity, then, the maximum likelihood estimators

are asymptotically equivalent to those of the uncensored case. In section 5, we present new estimators

defined for the case of a right-censored process with a bounded number of transitions. The difficulty

comes from the fact that we do not observe the next state after a right-censored duration in a state.

Under the ICR assumption, specific estimators of the distribution functions F|jj′ and of the direct

transition probabilities pjj′ are deduced from Gill’s estimator of the transition functions Fj′|j . A com-

parison of those estimators to the estimators for a general semi-Markov process leads to tests for an ICR

model against the semi-Markov alternative in section 6.
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2 Framework

For each individual i, i = 1, · · · , n, we observe, during a period of time ti, his successive states J(i) =

(J0(i), J1(i), · · · , JK(i)(i)), where J0(i) is the initial state, JK(i)(i) the final state after K(i) transitions.

The total number of possible states is assumed to be finite and equal to m. The successive observed

sojourn times are denoted X(i) = (X1(i),X2(i), · · · ,XK(i)(i)), where Xk(i) is the sojourn time i spent

in state Jk−1(i) after (k − 1) transitions, and the cumulative sojourn times are Tk = Σk
�=1X�.

One must notice that, if i changes state K(i) times, the sojourn time i spent in his last state JK(i) is

generally right censored by ti − TK(i)(i), where ti is the total period of observation for subject i. We

simplify the rather heavy notation for this last duration, and the last state JK(i)(i) as

X∗(i) ≡ ti − TK(i)(i), J∗(i) ≡ JK(i)(i).

The subjects are assumed independent and the probability distribution of the sojourn times absolutely

continuous. The two models we propose for the process describing the states of the patient are renewal

semi-Markov processes. Their behavior is defined through the following quantities:

1. The initial law ρ = (ρ1, ρ2, · · · , ρm):

ρj = P (J0 = j), j ∈ {1, 2, · · · ,m},∑
j∈{1,2,··· ,m}

ρj = 1. (1)

2. The transition functions Fj′|j(t) :

Fj′|j(t) = P (Jk = j′,Xk ≤ t|Jk−1 = j) , j, j′ ∈ {1, 2, · · · ,m}. (2)

Equivalent to the set of the transition functions Fj′|j , is the set of the transition probabilities, p =

{pjj′ , j, j′ ∈ {1, 2, · · · ,m}, together with the set of the distribution functions F|jj′ of the sojourn times

in each state conditional on the final state as defined below:

1. The direct transition probabilities from a state j to another state j′ :

pjj′ = P (Jk = j′|Jk−1 = j), (3)

2. The law of the sojourn time between two states j and j′ defined by its distribution function:

F|jj′(t) = P (Xk ≤ t|Jk−1 = j, Jk = j′), (4)

where
m∑

j′=1

pjj′ = 1 , pjj′ ≥ 0 , j, j′ ∈ {1, 2, · · · ,m}. (5)
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We notice that the distribution functions F|jj′ conditional on states (j, j′) do not depend on the value of

k, the rank of the state reached by the patient along the process, which is a characteristic of a renewal

process. We can define the hazard rate conditional on the present state and the next one:

λ|jj′(t) = lim
dt−→0

P (t ≤ Xk ≤ t + dt|Xk ≥ t, Jk−1 = j, Jk = j′)
dt

, (6)

as well as the cumulative conditional hazard:

Λ|jj′(t) =
∫ t

0

λ|jj′(u)du. (7)

Let Wj be a sojourn time in state j when no censoring is involved, Fj its distribution function, and

F j ≡ 1 − Fj its survival function, such that

F j(x) ≡ P (Wj > x) =
m∑

j′=1

pjj′F |jj′(x). (8)

The potential sojourn time in state j may be right censored by a random variable Cj having distribution

function Gj , density gj and survival function Gj . The observed sojourn time in state j is Wj ∧ Cj .

A general notation will be F for the survival function corresponding to a distribution function F , so that,

for example, F |jj′ = 1 − F|jj′ and similarly, for the transition functions, F j′|j = pjj′ − Fj′|j .

3 Independent Competing Risks Model

We assume now that, starting from a state j, the potential sojourn times Wjj′ until reaching each of

the states j′ directly reachable from j are independent random variables having distribution functions

defined through (4). The final state is the one for which the duration is the smallest. One can thus say

that all other durations are right censored by this one. Without restriction of the generality, we assume

that the subject is experiencing his kth transition. The competing risks model is defined by

Xk = min
j′=1,...,m

Wjj′ ,

Jk = j′ such that Wjj′ < Wjj” , j” �= j′, (9)

where Wjj′ has the distribution function F|jj′ .

In this simple case, independence, both of the subjects and of the potential sojourn times in a given

state, allows us to write down the likelihood as a product of factors dealing separately with the time

elapsed between two specific states (j, j′). For the Independent Competing Risk model, one derives from

(6), (8) and(9) that

Fj′|j(t) = P (Jk = j′,Xk ≤ t|Jk−1 = j) =
∫ t

0

{
∏

j” �=j′
F |jj”(u) } dF|jj′(u) (10)

=
∫ t

0

λ|jj′(u)e−
∑

j” Λ|jj” (u)du.
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A consequence is that the direct transition probabilities pjj′ defined in (3) may be derived from the

probabilities defined in (4),

pjj′ = P (Jk+1 = j′|Jk = j) =
∫ ∞

0

λ|jj′(u)e−
∑

j” Λ|jj” (u)du. (11)

In this special case, the likelihood is fully determined by the initial ρj and the functions λ|jj′ defined in

(6). The likelihood Lrc,n for the independent competing risks is proportional to

Lrc,n =
n∏

i=1

ρJ0(i)

K(i)∏
k=1

λ|Jk−1(i),Jk(i)(Xk(i))

×e−
∑

j” ΛJk−1(i),j”(Xk(i))e−
∑

j” Λ|J∗(i),j”(X
∗(i)) . (12)

It can be decomposed into the product of terms each of which is relative to an initial state j and a final

state j′. When gathering the terms in Lrc,n that are relative to a same hazard rate λ|jj′ or else Λ|jj′ ,

one observes that the hazard rates appear separately in the likelihood for each pair (j, j′)

Lrc,n =
{ n∏

i=1

ρJ0(i)

} ∏
j

m∏
j′=1

Lrc,n(j, j′),

Lrc,n(j, j′) =
n∏

i=1

K(i)∏
k=1

[λ|jj′(Xk(i))e−Λ|jj′ (Xk(i))]1{Jk−1(i)=j, Jk(i)=j′}

×[
e−Λ|jj′ (Xk(i))

]1{Jk−1(i)=j, Jk(i) �=j′}[
e−Λ|jj′ (X

∗(i))
]1{J∗(i)=j}

. (13)

This problem may be treated as m parallel and independent problems of right censored survival analysis.

The only link between them is the derivation of the direct transition probabilities using (11).

4 General Model

The patients are assumed to be independent, while the potential times for a given subject are no longer

assumed to be independent. We model separately the hazard rate and the transition functions ρj , pjj′

and λ|jj′ defined as in (1), (3) and (6). The direct transition probabilities pjj′ can no longer be derived

from the hazard rates.They are now free, except for the constraints (5). The distributions of the time

elapsed between two successive states j and j′ and those of the censoring are assumed to be absolutely

continuous. The likelihood Ln is proportional to

Ln =
n∏

i=1

ρJ0(i)

K(i)∏
k=1

GJk−1(i)(Xk(i))pJk−1(i),Jk(i)λ|Jk−1(i),Jk(i)(Xk(i))e−Λ|Jk−1(i),Jk(i)(Xk(i))

× gJ∗(i)(X∗(i))
{ m∑

j′=1

pJ∗(i),j′e−Λ|J∗(i),j′ (X
∗(i))

}

=
n∏

i=1

m∏
j=1

ρ
1{J0(i)=j}
j

K(i)∏
k=1

m∏
j′=1

[pjj′λ|jj′(Xk(i))e−Λ|jj′ (Xk(i)) Gj(Xk(i))]1{Jk−1(i)=j,Jk(i)=j′}

× {
gj(X∗(i))

m∑
j′=1

pjj′e−Λ|jj′ (X
∗(i))

}1{J∗(i)=j}
.
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This likelihood may be written as a product of terms each of which implies sojourn times exclusively in

one specific state j, Ln =
∏m

j=1 Ln(j).

For each subject i, and for each k ∈ {1, 2, · · · ,K(i)}, we denote 1 − δk(i) the censoring indicator of its

sojourn time in the kth visited state, Jk−1(i), with the convention that δ0(i) ≡ 1 for every i. If j′ is an

absorbing state, and if Jk(i) = j′, then j′ is he last state observed for subject i, k ≡ K(i), and we denote

it X∗(i) = 0 and δK(i)+1(i) = 1.

Another convention is that subject i is censored, when the last visited state J∗(i) is not absorbing and

the sojourn time in this state X∗(i) is strictly positive and we denote 1 − δi the censoring indicator. In

all other cases, in particular if the last visited state is absorbing or if the sojourn time there is equal to

0, we say that the subject is not censored and we thus have δi = 1. We can then write

δk(i) =
k∏

k′=1

δk′(i), δi = 1{X∗(i) = 0}.

For each state j of {1, 2, · · · ,m}, we define the following counts where k varies, for each subject i,

between 1 and K(i), i ∈ {1, 2, · · · , n}, and x ≥ 0,

Ni,k(x, j, j′) = 1{Jk−1(i) = j, Jk(i) = j′}1{Xk(i) ≤ x},
(14)

Yi,k(x, j, j′) = 1{Jk−1(i) = j, Jk(i) = j′}1{Xk(i) ≥ x},

N c
i (x, j) = (1 − δi)1{J∗(i) = j}1{X∗(i) ≤ x},

Y c
i (x, j) = (1 − δi)1{J∗(i) = j}1{X∗(i) ≥ x}.

By summation of the counts thus defined on the indices j′, i, or k, we get

N(x, j, j′, n) =
n∑

i=1

K(i)∑
k=1

Ni,k(x, j, j′), (15)

Nnc(x, j) =
m∑

j′=1

N(x, j, j′, n),

N(x, j, n) =
n∑

i=1

Nnc
i (x, j) + Nnc(x, j),

Y nc(x, j, j′, n) =
n∑

i=1

K(i)∑
k=1

Yi,k(x, j, j′),

Y (x, j, n) =
m∑

j′=1

Y nc(x, j, j′, n) +
n∑

i=1

Y c
i (x, j).

By taking for x the limiting value ∞ we define Ni,k(j, j′) = Ni,k(∞, j, j′), N c
i (j) = N c

i (∞, j), N(j, j′, n) =

N(∞, j, j′, n), Nnc(j, n) = Nnc(∞, j, n), so that N(j, j′, n) is the number of direct transitions from j to
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j′ that are fully observed,N(j, n) is the number of sojourn times in state j, whose Nnc(j, n) (nc for

not censored) are fully observed and N c(j, n) (c for censored) are censored. For x = 0, we denote

Y c
i (j) = Y c

i (0, j). The number of individuals initially in state j is N0(j, n) =
∑n

i=1 1{J0(i) = j}.
The true parameter values are denoted ρ0

j and p0
jj′ , and the true functions of the model are F

0

j′|j ,

F
0

|jj′ , F
0

j , G
0

j and Λ0
|jj′ .

Let ln = log(Ln) and ln(j) = log(Ln(j)). The log-likelihood relative to state j is proportional to

ln(j) = ρjN
0(j, n) +

m∑
j′=1

N(j, j′, n) log(pjj′)

+
n∑

i=1

K(i)∑
k=1

m∑
j′=1

Ni,k(j, j′)[log(λ|jj′(Xk(i))) − Λ|jj′(Xk(i))]

+
n∑

i=1

N c
i (j)[log{

m∑
j′=1

pjj′e−Λ|jj′ (X
∗(i))}] (16)

= l0n(j) + lnc
n (j) + lcn(j),

Among the sum of four terms giving (16), let l0n be the first term relative to the initial state, lnc
n (nc for

non censored) the sum of the second and third terms, which involve exclusively fully observed sojourn

times in state j, and finally lcn (c for censored) the last term which deals with censored sojourn times in

state j.

We denote Kn = maxi=1,2··· ,n K(i) and nKn =
∑n

i=1 K(i) respectively the maximum number of

transitions and the total number of transitions for the n subjects. We consider two different designs of

experiments, whether or not observations are stopped after a fixed amount K of direct transitions.

It is obvious that if the densities fj of the sojourn times, without censoring, for every state j, are

strictly positive on ]0; t0[ for some t0 > 0, and if the distribution functions Gj of the censoring times

are such that Gj(t) < 1 for all t > 0, the maximal number Kn = maxi K(i) of transitions experienced

by a subject tends to infinity when n grows. If moreover the mean number of transitions Kn goes also

to infinity, then the term relative to censored times lcn(j) is the sum of terms of order n while the term

lnc
n (j) is a sum of terms of order nKn. Therefore we have

Proposition 1 Under the assumptions Kn → ∞, and

Nnc(j, n)
nKn

−→ q0
j > 0, j ∈ {1, 2, · · · ,m},

then

lim
n−→∞

ln(j)
nKn

= lim
n−→∞

lnc
n (j)
nKn

.
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and the maximum likelihood estimators are asymptotically equivalent to

p̂jj′ =
N(j, j′, n)
Nnc(j, n)

,

Λ̂|jj′(x) =
∫ x

0

dN(x, j, j′, n)
Y nc(s, j, j′, n)

,

F̂ |jj′(x) =
n∏

i=1

K(i)∏
k=1

{
1 − Ni,k(x, j, j′)

Y nc(Xk(i), j, j′, n)

}
.

5 Case of a bounded number of transitions

We now assume that the number of transitions is bounded by a finite number K fixed in advance.

For each subject i = 1, · · · , n, the observation ends at time ti =
∑K(i)

k=1 Xk(i) if K(i) = K or if JK(i)

is an absorbing state, and at time ti where there is a right censoring in the K(i)th visited state, K(i) < K.

Using notations in (15), the likelihood term relative to the initial state j may be written

l0n(j) = N0(j, n) log(ρj),

the terms relative to the fully observed sojourn times in state j is

lnc
n (j) =

m∑
j′=1

{
N(j, j′, n) log(pjj′)

+
n∑

i=1

K∑
k=1

Ni,k(j, j′)[log(λ|jj′(Xk(i))) − Λ|jj′(Xk(i))]
}

,

and the term relative to the censored sojourn times in state j is

lcn(j) =
n∑

i=1

N c
i (j)[log{

m∑
j′=1

pjj′e−Λ|jj′ (X
∗(i))}].

The score equations for pjj′ and Λjj′ do not lead to explicit solutions because they involve the survival

function F j and the transition function F j′|j . We define estimators p̂n,jj′ and Λ̂n,|jj′ by plugging in the

score equations the Kaplan-Meier estimator of F j and the estimator of Fj′|j given by Gill (1980),

F̂n,j(x) =
n∏

i=1

K(i)∏
k=1

{
1 − 1

Y (Xk(i), j, n)

}Nnc
i,k(x,j)

=
∏
y≤x

{
1 − dN(y, j, n)

Y (y, j, n)

}
, (17)

F̂n,j′|j(x) =
n∑

i=1

K(i)∑
k=1

F̂n,j(X−
k (i))

Ni,k(x, j, j′)
Y (Xk(i), j, n)

=
∫ x

0

F̂n,j(y−)
dN(y, j, j′, n)

Y (y, j, n)
. (18)

We obtain the estimators

ρ̂n,j =
N0(j, n)

n
,

p̂n,jj′ =
N(j, j′, n) + N̂ c(j, j′, n)

Nnc(j, n) + N c(j, n)
, (19)

Λ̂n,|jj′(x) =
∫ x

0

dN(y, j, j′, n)

Y nc(y, j, j′, n) + Ŷ c(y, j, j′, n)
,
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with

Ŷ c(y, j, j′, n) =
n∑

i=1

Y c
i (y, j)

F̂n,j′|j(X∗(i))

F̂n,j(X∗(i))
,

N̂ c(j, j′, n) =
n∑

i=1

N c
i (j)

F̂n,j′|j(X∗(i))

F̂n,j(X∗(i))
.

The variable (n1/2(p̂n,jj′−p0
jj′))j′ and the process {n1/2(Λ̂n,|jj′−Λ0

|jj′))j′ are asymptotically Gaussian,

on every interval [0, τ ] such that
∫ τ

0
(F

0

j′|jG
0

j )
−1 dΛ0

j′|j < ∞ (Pons (2002)).

6 A Test of the Hypothesis of Independent Competing Risks.

In the ICR case, the initial probabilities jointly with the survival functions F |jj′ of the sojourn times

conditional on states on both ends, are sufficient to determine completely the law of the process. In the

general case, however, the two sets of parameters pjj′ and F |jj′ are independent and may be modeled

separately. Our aim is to derive a test of the hypothesis of Independent Competing Risks (ICR):

H0 : The process is ICR

H1 : The process is not ICR

The Kaplan-Meier estimator ̂̄Fn,j of F̄j , given in (17), and the estimator F̂n,j′|j of Fj′|j , given in

(18), are consistent and asymptotically Gaussian both under H0 and under H1. It is also true for the

straightforward estimator ρ̂n,j of the initial probabilities. From those estimators, one may derive general

estimators of the transition probability pjj′ and of the survival function F |jj′ of the time elapsed between

two successive jumps in states j and j′. For these estimators, we shall use the same notations as the

estimators of pjj′ and F |jj′ defined in section 5, though they are now given by

p̂n,jj′ = max
t

F̂n,j′|j(t) (20)

F̂n,|jj′(t) = 1 − F̂n,j′|j(t)
p̂n,jj′

. (21)

In the independent competing risk model, the transition probability Fj′|j satisfies (10) and thus may

be estimated as

F̂RC
n,j′|j(t) = −

∫ t

0

∏
j” �=j′

F̂n,|jj”(s) dF̂n,|jj′(s) (22)

=
1∏

j” p̂n,jj”

∫ t

0

∏
j” �=j′

F̂n,j”|j(s) F̂n,j(s−) dΛ̂n,j′|j(s),

where

Λ̂n,j′|j(t) =
∫ t

0

1{Y (s, j, n) > 0}dN(s, j, j′, n)
Y (s, j, n)

(23)
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is the estimator of the cumulative hazard function Λn,j′|j in the general model. A competitor to p̂n,jj′ is

deduced as

p̂RC
n,jj′ = max

t
F̂RC

n,j′|j(t). (24)

Proposition 2 If p0
jj′ > 0,

√
n(p̂n,jj′ − p0

jj′) is asymptotically distributed as a normal random vector

with mean 0, variances and covariances

σ2
jj′ =

1
π0

j

∫ ∞

0

1

G
0

j (s)F
0

j (s)

{
(F

0

j′|j(s) − p0
j′|j)

2
dF 0

j (s)

F
0

j (s)
+ {F 0

j (s) + 2(F
0

j′|j(s) − p0
j′|j)} dF

0

j′|j(s)

}
,

σ2
jj′j” =

1
π0

j

∫ ∞

0

1

G
0

j (s)F
0

j (s)

{
(F

0

j′|j(s) − p0
j′|j)(F

0

j”|j(s) − p0
j”|j)

dF 0
j (s)

F
0

j (s)

+(F
0

j′|j(s) − p0
j′|j)} dF

0

j”|j(s) + (F
0

j”|j(s) − p0
j”|j)} dF

0

j′|j(s)
}

.

Moreover,
√

n(p̂RC
n,jj′ − p0

jj′) is asymptotically distributed as a centered Gaussian variable.

Estimators of the asymptotic variance and covariances of (p̂n,jj′)j′∈J(j) may be obtained by replacing

the functions F
0

j , F 0
j′|j and Λ0

j′|j by their estimators in the general model, (17, (18) and (23). Due to their

intricate formulas, it seems difficult to use an empirical estimator of the asymptotic variance of p̂RC
n,jj′ and

a bootstrap estimator should be preferred. Asymptotic confidence intervals for p0
jj′ at the level α are

deduced from the (1 − α/2)-quantile cα of their boostrap distributions, In,jj′(α) in the general case and

IRC
n,jj′(α) under the null hypothesis of Independent Competing Risks.

A test of the Independent Competing Risks hypothesis may be defined by rejecting H0 if In,jj′(α) and

IRC
n,jj′(α) are not overlapping for some j′. As the estimators of the parameters p0

jj′ are not independent,

the level α∗ of this test with critical region

Rnj(α) = ∩m
j′=1Rnjj′(α), where Rnjj′(α) = {In,jj′(α) ∩ IRC

n,jj′(α) �= ∅},

satisfies α∗ ≥ 1 − (1 − α)m.
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7 Appendix

Proof of Proposition 2.

Let τn,j = arg maxt F̂n,j(t). The asymptotic behavior of p̂n,jj′ is derived from theorem 3 in Gill (1980)

which states the weak convergence of the process

(
√

n(F̂n,j′|j(t ∧ τn,j) − F 0
j′|j(t ∧ τn,j))j′∈J(j),

√
n(F̂n,j(t ∧ τn,j) − F

0

j (t ∧ τn,j))t≥0

11



to a Gaussian process defined, for continuous transition functions F 0
j′|j , as{∫ t

0

F
0

j′|j(s) dVjj′(s)
EYi(s, j)

− F
0

j′|j(t)
∫ t

0

dVj(s)
EYi(s, j)

+
∫ t

0

F
0

j′|j(s) dVj(s)
EYi(s, j)

, F
0

j (t)
∫ t

0

dVj(s)
EYi(s, j)

}

where Vjj′ , j, j′ ∈ {1, 2, · · · ,m} is a multivariate Gaussian process with independent increments, having

mean 0 and covariances

var(Vjj′(t)) =
∫ t

0

EYi(s, j)
dF

0

j′|j(s)

F
0

j (s)
,

cov(Vjj′(t), Vjj”(t)) = 0 if j′ �= j” and cov(Vjj′(t), Vj1j′
1
(t1)) = 0 if j1 �= j or t1 �= t, and Vj =

∑
j′ Vjj′ .

As EYi(s, j) = π0
j G

0

j (s)F
0

j (s), it follows that
√

n(p̂n,jj′ − p0
jj′) is asymptotically distributed as∫ ∞

0

dVjj′(s)

π0
j G

0

j (s)
− p0

jj′

∫ ∞

0

dVj(s)

π0
j G

0

j (s)F
0

j (s)
+

∫ ∞

0

F
0

j′|j(s)
dVj(s)

π0
j G

0

j (s)F
0

j (s)
.

Denoting this limit as A − B + C, we have

var(A) =
1
π0

j

∫ ∞

0

1

G
0

j (s)
dF

0

j′|j(s)

var(B) =
p2

jj′

π0
j

∫ ∞

0

1

G
0

j (s)F
0

j (s)
2 dF 0

j (s)

var(C) =
1
π0

j

∫ ∞

0

F
0

j′|j(s)
2

G
0

j (s)F
0

j (s)
2 dF 0

j (s)

cov(A,B) =
p0

jj′

π0
j

∫ ∞

0

1

G
0

j (s)F
0

j (s)
dF

0

j′|j(s)

cov(A,C) =
1
π0

j

∫ ∞

0

F
0

j′|j(s)

G
0

j (s)F
0

j (s)
dF

0

j′|j(s)

cov(B,C) =
p0

jj′

π0
j

∫ ∞

0

F
0

j′|j(s)

G
0

j (s)F
0

j (s)
2 dF 0

j (s),

and σ2
jj′ is the variance of A − B + C. The covariance σ2

jj′j” is obtained by similar calculations, but the

covariance between the corresponding terms A(jj′) and A(jj”) is zero.

From (22), the asymptotic Gaussian distribution of
√

n(p̂RC
n,jj′ − p0

jj′) is a consequence of the asymp-

totic behavior of the estimators F̂n,j and F̂n,j′|j and of the estimator Λ̂n,j′|j given by (23), using again

theorem 3 in Gill (1980). �

12



Limiting covariance of
√

n(p̂RC
n,jj′ − p0

jj′).

The limiting covariance of
√

n(p̂RC
n,jj′ − p0

jj′) may be calculated using the following expressions

σ2
jj′(t) =

1
π0

j

∫ t

0

1

G
0

j (s)F
0

j (s)

{
(F

0

j′|j(s) − F
0

j′|j(t))
2
dF 0

j (s)

F
0

j (s)
+ {F 0

j (s) + 2(F
0

j′|j(s) − F
0

j′|j(t))} dF
0

j′|j(s)

}
,

σ2
jj′j”(t) =

1
π0

j

∫ t

0

1

G
0

j (s)F
0

j (s)

{
(F

0

j′|j(s) − F
0

j′|j(t))(F
0

j”|j(s) − F
0

j”|j(t))
dF 0

j (s)

F
0

j (s)

+(F
0

j′|j(s) − F
0

j′|j(t))} dF
0

j”|j(s) + (F
0

j”|j(s) − F
0

j”|j(t))} dF
0

j′|j(s)
}

,

c
(1)
jj′(t) = lim

n
Cov{√n(F̂n,j(t) − F

0

j (t)),
√

n(F̂n,j′|j(t) − F
0

j′|j(t))}

= F
0

j (t){
∫ t

0

F
0

j′|j

G
0

j (F
0

j )2
(dF 0

j′|j + dF 0
j ) − F

0

j′|j(t)
∫ t

0

dF 0
j

G
0

j (F
0

j )2
,

v
(1)
jj′ (t) ≡ lim

n
Var

√
n{F̂n,j(t−)

∏
j1 �=j′

F̂n,j1|j(t) − F
0

j (t
−)

∏
j1 �=j′

F
0

j1|j(t)}

= {
∏

j1 �=j′
F̂n,j1|j(t)}2 lim

n

[ ∑
j2 �=j′

Var
√

n{F̂n,j2|j(t) − F
0

j2|j(t)} {
F

0

j (t)

F
0

j2|j(t)
}2 + Var

√
n{F̂n,j(t−) − F

0

j (t)}

+
∑

j2 �=j′

∑
j3 �=j′,j2

(F
0

j (t))
2

F
0

j2|j(t)F
0

j3|j(t)
Cov{√n(F̂n,j2|j(t) − F

0

j2|j(t)),
√

n(F̂n,j3|j(t) − F
0

j3|j(t))}

+
∑

j2 �=j′

F
0

j (t)

F
0

j2|j(t)
Cov{√n(F̂n,j(t−) − F

0

j (t)),
√

n(F̂n,j2|j(t) − F
0

j2|j(t))}
]

= {F 0

j (t)
∏

j1 �=j′
F̂n,j1|j(t)}2

[ ∑
j2 �=j′

σ2
jj2

(t)

(F
0

j2|j(t))
2

+
∫ ∞

0

dF 0
j (s)

π0
j G

0

j (s)(F
0

j )2(s)

+
∑

j2 �=j′

∑
j3 �=j′,j2

σ2
jj2j3

F
0

j2|j(t)F
0

j3|j(t)
+

∑
j2 �=j′

c
(1)
jj2

(t)

F
0

j2|j(t)

]
.

and, for any sequence Anj converging to Aj ,

lim
n

Var
√

n(
∏
j

Anj −
∏
j

Aj) =
∑

j

∏
j′ �=j

A2
j′ lim

n
nVar(Anj − Aj)

+
∑

j

∑
j′ �=j

AjAj′
∏

j′,j” �=j

A2
j” lim

n
nCov(Anj − Aj , Anj′ − Aj).

Thus

(σRC
jj′ )2 =

1
{∏j” p0

jj”}2
{v(2)

jj′ + v
(3)
jj′ − 2c

(2)
jj′}
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with

v
(2)
jj′ ≡ lim

n
Var

√
n
{∫ ∞

0

F̂n,j(s−)
∏

j” �=j′
F̂n,j”|j(s) dΛ̂n,j′|j(s) − p0

jj′
∏
j”

p0
jj”}

=
∫ ∞

0

lim
n

Var
√

n{F̂n,j(s−)
∏

j” �=j′
F̂n,j”|j(s) − F

0

j (s)
∏

j” �=j′
F

0

j”|j(s)} dΛ0
j′|j(s)

+
∫ ∞

0

{F 0

j (s)
∏

j” �=j′
F

0

j”|j(s)}2 lim
n

Var
√

n(dΛ̂n,j′|j(s) − dΛ0
j′|j(s))

=
∫ ∞

0

v
(1)
jj′ (s) dΛ0

j′|j(s) +
∫ ∞

0

{F 0

j (s)
∏

j” �=j′
F

0

j”|j(s)}2
dF 0

j (s)

π0
j G

0

j (s)(F
0

j′|j)2(s)
,

v
(1)
jj′ (t) ≡ lim

n
Var

√
n{F̂n,j(t−)

∏
j1 �=j′

F̂n,j1|j(t) − F
0

j (t
−)

∏
j1 �=j′

F
0

j1|j(t)}

= {
∏

j1 �=j′
F̂n,j1|j(t)}2 lim

n

[ ∑
j2 �=j′

Var
√

n{F̂n,j2|j(t) − F
0

j2|j(t)} {
F

0

j (t)

F
0

j2|j(t)
}2 + Var

√
n{F̂n,j(t−) − F

0

j (t)}

+
∑

j2 �=j′

∑
j3 �=j′,j2

(F
0

j (t))
2

F
0

j2|j(t)F
0

j3|j(t)
Cov{√n(F̂n,j2|j(t) − F

0

j2|j(t)),
√

n(F̂n,j3|j(t) − F
0

j3|j(t))}

+
∑

j2 �=j′

F
0

j (t)

F
0

j2|j(t)
Cov{√n(F̂n,j(t−) − F

0

j (t)),
√

n(F̂n,j2|j(t) − F
0

j2|j(t))}
]

= {F 0

j (t)
∏

j1 �=j′
F̂n,j1|j(t)}2

[ ∑
j2 �=j′

σ2
jj2

(t)

(F
0

j2|j(t))
2

+
∫ ∞

0

dF 0
j (s)

π0
j G

0

j (s)(F
0

j )2(s)

+
∑

j2 �=j′

∑
j3 �=j′,j2

σ2
jj2j3

F
0

j2|j(t)F
0

j3|j(t)
+

∑
j2 �=j′

c
(1)
jj2

(t)

F
0

j2|j(t)

]
,

v
(3)
jj′ = lim

n
Var

√
n
{∏

j′
p̂n,jj′ −

∏
j′

p0
jj′} =

∑
j1

σ2
jj1{

∏
j2 �=j1

p0
jj2}2 +

∑
j1

∑
j2 �=j1

p0
jj1p

0
jj2(

∏
j3 �=j1,j2

p0
jj3)

2σ2
jj1j2 ,

and similar calculations give the expression of

c
(2)
jj′ ≡ lim

n
Cov

[√
n{

∏
j′”

p̂n,jj” −
∏
j”

p0
jj”},

√
n{

∫ ∞

0

F̂n,j(s−)
∏

j” �=j′
F̂n,j”|j(s) dΛ̂n,j′|j(s) − p0

jj′
∏
j”

p0
jj”}.
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