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Abstract: We review recent developments in reliability or survival analysis.
We consider various models for the time to failure or survival time, by a law
on IR+ that may depend on one or more factors. Inhomogeneity is taken into
account by way of frailty models. The presence of censoring and truncation of
a general type, more complex than the usual simple case of right censoring, in-
duced the most recent developments on these topics. In case of clusters of items
or families of patients implying a possible dependence between multiple failure
times, shared frailty models or hierarchical dependency models are considered.
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1.1 Cox Model and Extensions

Let the failure time X have survival function S(x) = P (X ≥ x), density
f = −dS/dx, hazard λ(x) = f(x)/S(x), cumulative hazard Λ(x) =

∫ ∞
0 λ(u)du.

1.1.1 The simple Cox model

The basic Cox model assumes that conditional on a p-dimensional covariate
Z = z, the hazard rate verifies

λ(x|z) = λ0(x)e(<β,z>)

where β is an unknown p-dimensional parameter and λ0 an unknown function
of x. It is the most popular model because it leads to very easy interpretation
of the impact of each component of the covariate, over all when they are con-
stant in time. But it suffers some limitations. Let the covariates be constant
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in time at the moment. First, the multiplicative dependence on the covariate
z, assumed to be exponential could be replaced by a function ϕ(z); the cor-
responding model is called a proportional hazard (PH) model (see Definition
1.4.4). The second limitation is that the model depends only on the time x
elapsed between the starting event (for example, diagnosis) and the terminal
event (for example, death), and not on the chronological time t; it is actually
assumed to be homogeneous in chronological time. One could introduce a de-
pendence on x and t. The third limitation is that the effect of a given covariate
is constant in time. This leads to the fact that the survival functions S(.|z) and
S(.|z′) corresponding to two distinct values z and z′ of Z are always ordered,
for example, S(x|z) < S(x|z′) ∀x, without any possibility of crossing. A fourth
limitation is that if one pertinent covariate is omitted, even if it is indepen-
dent of the other covariates in the model, averaging on the omitted covariate
gives a new model that is no longer of Cox type, and if it is treated as such,
this leads to (possibly very) biased estimates [Bretagnolle and Huber (1988)] of
the regression coefficients β. Frailty models take care of this case, introducing
heterogeneity in the Cox model.

1.1.2 Non homogeneity in chronological time

In order to take into account the effect of the initial time t, there are several
possibilities: either add it, possibly categorized, as a (p + 1)th component of
covariate Z = (Z1, . . . , Zp) or have a baseline hazard which is both a function
of x and t, λ0 = λ0(x; t). The second proposal is due to Pons (2001, 2002) and
Pons and Visser (2000) who studied its asymptotic properties allowing for the
use of the following model:

λ(x|t, z) = λ0(x; t)e<β,z(t+x)>.

The usual Nelson–Aalen estimate for Λ is a kernel estimate [Pons and Visser
(2000)], with kernel K a continuous, symmetric density, with support [−1, +1]
and Khn(s) = (1/hn)K(s/hn) where hn −→ 0 at a convenient rate

Λ̂n,X |S(x; s; β) =
∑

i

Khn(s − Si)δi1{Xi ≤ x}
nS(0)

where S(0) is defined as S(0) = (1/n)
∑

j Khn(s − Sj)Yj(x)e<β,Zj(Sj+x)> β̂n

maximizes the partial likelihood:

ln(β) =
∑

i

δi[< β, Zi(T 0
i ) > − ln{nS(0)(Xi; s; β)}]εn(Si)

where εn(s) = 1{s ∈ [hn, τ − hn].
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Good asymptotic properties of those estimators were proved. Also a Good-
ness of fit test was derived, as well as a test of H0 : the model is Cox, homo-
geneous in time: λX |S(x; s) ≡ λX(x) against H1: the model depends also on
chronological time: λX |S(x; s).

1.1.3 Effect not constant in time

The simplest way to involve effects not constant in time of some covariates
is to consider that β is actually piecewise constant. This can be viewed as a
breakpoints problem with the step function β(x) having an unknown number k

of steps (known to be bounded by a fixed constant k0) as well as an unknown
localization of the jumps, depending on the admissible complexity of the model.
Another way is to consider that the constant ratio β may vary as a function of
an observed covariate Z0 ∈ IR: β = β(Z0), such that Z0 ∼ f0 for some density
f0. The corresponding model [Pons (2001)] is

λ(t|Z0, Z) = λ0(t)e<β(Z0),Z(t)>.

Observations are (Ti, δi, Zi0, Zi) , i = 1, 2, . . . , n; Ti = T 0
i ∧ Ci ; δi = 1{T 0

i ≤
Ci}. The problem is to estimate β(z0) on a compact subset JZ0 of the support
of Z0. β̂n(z0) maximizes the partial likelihood

ln,z0(β) =
∑

i≤n

δiKhn(z0 − Zi0)[< β, Zi(Ti) >

− ln{
∑

j≤n

Khn(z0 − Zj0)Yj(Ti)e<β,Zj(Ti)>}]Λ̂n(t)

=
∑

i:Ti≤t

δi

S
(0)
n (Ti)

where S
(0)
n (s) =

∑
j Yj(s)1{Zj0 ∈ JZ0}e<β̂n(Zj0),Zj(Ti)>.

1.1.4 Omitted pertinent covariate: frailty models

Let the Cox model be true, but one component of the covariate Z is omitted
or unobserved, say the (p + 1)th component. S(t|Z ′ = (z1, . . . , zp)) is equal to
S(t|Z = (z1, . . . , zp+1)) averaged on zp+1. Denoting

η = eβp+1zp+1 ,

the corresponding model is a frailty model thus defined: η is a positive random
variable, the survival of subject i, i = 1, · · · , n, whose p-dimensional covariate
zi is observed and frailty ηi is not observed, but has known distribution function
Fη on IR+. The Xis are independent and their survival function S and hazard
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function h obey the following frailty model, where β ∈ Rp is an unknown
regression parameter, λ(t) the unknown baseline hazard and Λ(t) =

∫ ∞
0 λ(u)du

the baseline cumulative hazard:

h(t|z, η) = ηeβT zλ(t) (1.1)

S(t|z, η) = e−ηeβT zΛ(t)

S(t|z) =
∫ ∞

0
e−xeβT zΛ(t)dFη(x) = e−G(eβT zΛ(t)) (1.2)

where G is equal to − log of the Laplace transform of η:

G(y) = − ln(
∫ ∞

0
e−uydFη(u)) (1.3)

The two most popular frailty distributions are the Gamma (Clayton-Cuzick
frailty model) with mean 1 and variance c, and the Inverse Gaussian with mean
1 and variance 1/2b. The respective functions G defined in (1.3) are equal to:

G(x, c) = 1
c ln(1 + cx), c > 0

G(x, b) =
√

4b(b + x)− 2b, b > 0.

1.2 General Censoring and Truncation

1.2.1 Definition

Very often, the failure or survival time X is right censored and classical statisti-
cal inference is obtained under this assumption. But it may also happen rather
frequently that X is both censored, in a more general way than on its right,
and also truncated, so that the Xis are generally not observed. Instead, one
observes two intervals (Ai, Bi), which are respectively the censoring interval,
Ai = [Li; Ri], and the truncating interval ]Li;Ri[, such that Bi ⊃ Ai. This
means that Xi is not observed but is known to lie inside Ai, and Ai itself is
observed only conditionally on the fact that it is inside the truncating interval
Bi. Otherwise, the corresponding subject is said to be “truncated,” i.e., it does
not appear in the sample. Finally, for the n subjects who are not truncated,
the observations are (Ai, Bi, zi), i ∈ {1, 2, · · · , n}. When in model (1.2), there
is no covariate and G is the identity, the non parametric maximum likelihood
estimate under general censoring and truncation is due to the early work of
Turnbull (1976). It was then extended to the semi-parametric Cox model by
Alioum and Commenges (1994), and to the general frailty model (1.2) by Huber
and Vonta (2004). The consistency of the NPML estimate of the density of X
was proved [Huber, Solev, and Vonta (2006)] under regularity conditions on the
laws of X and of the censoring and truncation schemes.



Extended Cox and Accelerated Models in Reliability 7

1.2.2 Maximum likelihood estimation for frailty models

Under the above censoring and truncation scheme, the likelihood is proportional
to

l(S) =
n∏

i=1

li(Si) =
n∏

i=1

PSi(Ai)
PSi(Bi)

=
n∏

i=1

{
Si(L−

i ) − Si(R+
i )

}
{
Si(L+

i )− Si(R−
i )

} . (1.4)

Following Turnbull (1976), we define the “beginning” set L̃ and the “finishing”
set R̃, in order to take advantage of the fact that the likelihood is maximum
when the values of Si(x) are the greatest possible for x ∈ L̃ and the smallest
possible for x ∈ R̃:

L̃ = {Li, 1 ≤ i ≤ n} ∪ {Ri, 1 ≤ i ≤ n} ∪ {0}

R̃ = {Ri, 1 ≤ i ≤ n} ∪ {Li, 1 ≤ i ≤ n} ∪ {∞}.

Let

Q = {[q′jp′j ] : q′j ∈ L̃ , p′j ∈ R̃ , [q′jp
′
j ] ∩ L̃ = ∅ , [q′jp

′
j ] ∩ R̃ = ∅}

0 = q′1 ≤ p′1 < q′2 ≤ p′2 < . . . < q′v ≤ p′v = ∞.

Then,
Q = ∪v

j=1[q
′
j , p

′
j] = C ∪ W ∪ D

where

C = ∪[q′j , p
′
j] covered by at least one censoring set,

W = ∪[q′j , p
′
j] covered by at least one truncating set,

but not covered by any censoring set,
D = ∪[q′j , p

′
j] not covered by any truncating set.

The special case of G ≡ Id and β = 0 was studied in detail in Turnbull (1976),
followed by Frydman (1994) and Finkelstein (1993).

The above likelihood, for the general frailty model (1.2) as a function of the
unknown β and Λ, is equal to

l(Λ, β|(Ai, Bi, zi)i∈{1,..,n}) =
n∏

i=1

{
e−G(eβT ziΛ(L−

i )) − e−G(eβT ziΛ(R+
i ))

}
{
e−G(eβT ziΛ(L+

i )) − e−G(eβT ziΛ(R−
i ))

} .

As in the special case where G = Id and β = 0 in (1.2), the NPML estimator
of Λ for the frailty model (1.1) is not increasing outside the set C ∪ D [Huber
and Vonta (2004)]. Moreover, conditionally on the values of Λ(qj

−) and Λ(pj
+),

1 ≤ j ≤ m, the likelihood does not depend on how the mass Λ(pj
+)−Λ(qj

−) is
distributed in the interval [qj , pj ]. From this remark, follows the object of the
estimation of Λ and β. The special case of G = Id was studied by Alioum and
Commenges.
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X = Y2 − Y1 : AIDS induction time.

Figure 1.1: AIDS example of right truncation

1.3 Discrete Time: Logistic Regression Models for

the Retro-Hazard

A very classical example of censored and truncated survival data is the retro-
spective AIDS induction time for patients infected by blood transfusion
[Kalbfleish (1989)]. The starting date Y1, infection time, is reached retrospec-
tively from Y2, the time of onset of AIDS. 0 < Y1 + X ≤ b holds, which means
that X is right truncated by b − Y1. When, moreover, one knows that Y1 took
place after the first transfusion, Y0, X may be also left censored by Y2 − Y0.
We have there a censoring variable C = Y2 − Y0 and a truncating variable
T = b−Y1. We have there data that are left censored and right truncated. The
treatment of this kind of data is the same as the treatment of right censored
left truncated data, that is implied hereafter.

Assuming now that, for those censored and truncated data, time is discrete,
with values {1, 2, . . . , k}. X is the survival, C the right censoring and T the left
truncating variable, they are independent and the model for X is the logistic
model for the retro-hazard h∗(t)dt = [f(t)dt]/[1− S(t)]:

log
(h∗(t|Z(t) = z)

(1 − h∗(t|Z(t) = z))
=< β, z >, t ∈ {1, 2, . . . , T}.

Gross and Huber (1992) obtain non parametric estimators and tests for the
saturated model when all covariates are categorical, for the three laws of X ,
the survival, C the censoring and T the truncation, using a special partial
likelihood. In Figure 1.1, observations take place in the hatched triangle, due
to left truncation, and the risk set at time i is the hatched rectangle.
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Figure 1.2: Risk zone for right censored and left truncated discrete times

1.4 Accelerated Failure Time Models (AFT)

Enforced controlled stresses are meant to reduce the time on test. It is used in
particular for tires, brakes and more generally for planes and trains equipments.
Hence the need for a transfer functional [Nikulin (????)] allowing an interpola-
tion from the time to failure under enforced stress to the time to failure under
regular stress: Sedyakin principle.

1.4.1 Sedyakin principle

Let E1 be the set of constant stresses, E2 the step stresses, thus defined:

E2 = {Z(.) : Z(t) = Z1 11{0 ≤ t ≤ t0} + Z2 11{t > t0}; Z1, Z2 ∈ E1}.

The Sedyakin principle may then be formulated as follows for step stresses:

Definition 1.4.1 (Sedyakin principle (AS) on E2) Let Z1(.) and Z2(.) be
two stresses. We say that t1 ∼ t2 if S(t1|Z1(.)) = S(t2|Z2(.)). If Z1(.) = Z1

constant, Z2(.) = Z2 constant and Z(t) = Z1 11{0 ≤ t ≤ t1} + Z2 11{t > t1},
then Sedyakin principle (AS) on E2 holds if

λ(t1 + s|Z(.)) = λ(t2 + s|Z2).
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Let E be the set of the general stresses, that are p-dimensional left continuous
processes having right limits. Then, the Sedyakin principle for general stress is

Definition 1.4.2 (Generalized Sedyakin principle (AGS) on E) A model
obeys generalized Sedyakin assumption (AGS) if there exists a function g such
that

λ(t|Z(s) 0 ≤ s ≤ t) = g(Z(t), S(t|Z(s) ; 0≤ s ≤ t)).

It means that the hazard rate λ(t|Z(.)) is independent on the past condi-
tionally on Λ(t|Z(s), 0 ≤ s < t)):

Λ(t|Z(.))

(λ(t|Z(.)) ⊥ F t−

or equivalently on S(t|Z(s), 0 ≤ s < t)) sometimes called the resource.

1.4.2 Definition of AFT models

Loosely speaking, an accelerated model is a model based on a given survival
function G and a transformation α(t) of time t, where α is a non decreasing
function: S(t) = G(α(t)). This acceleration (α > Id) or deceleration (α < Id)
takes place through a positive function r of the stress Z(s); 0 < s ≤ t:

Definition 1.4.3 (AFT model on E) A model is AFT on E if there exists a
survival function G and a positive function r such that:

S(t|Z(s), 0 ≤ s ≤ t) = G(
∫ t

0
r(Z(s))ds) ∀Z ∈ E .

In the simple case of a constant stress Z ∈ E1 : Z = z0:

S(t|Z) = G(r(z0)t) ∀Z ∈ E1. (∗)

There is a relationship between Sedyakin (AGS)and AFT models [Bagdonavicius
and Nikulin (2002)]: AGS and (∗) hold ⇐⇒ ∃q > 0, r > 0 such that

λ(t|Z(.)) = r(Z(t)) ∗ q(S(t|Z(.)).

An AFT model on E2 is such that if Z1 and Z2 are constant stresses, and
Z(t) = Z1 11{0 ≤ t ≤ t1}+ Z2 11{t > t1}, then

t2 =
r(Z1)
r(Z2)

∼ t1

S(t|Z(.)) =
{

S(t|Z1), 0 ≤ t < t1
S(t − t1 + t2|Z2), t ≥ t1

.
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1.4.3 Relationships between accelerated (AFT) and
proportional hazard (PH) models

The Cox model is a particular case of the more general proportional hazard
(PH) models:

Definition 1.4.4 (PH model) A PH model on E is such that, for two positive
functions r and λ0, the hazard rate verifies:

λ(t|Z(.)) = r(Z(t)) λ0(t) ∀Z(.) ∈ E .

Then Λ(t|Z(.)) =
∫ t
0 r(Z(s))dΛ0(s) and S(t|Z(.)) = e−

∫ t
0 r(Z(s))dΛ0(s), where

Λ0(t) =
∫ t
0 λ0(s)ds, and S0(t) = e−Λ0(t). The simple case of a PH model on

E1 gives λ(t|Z) = r(Z)λ0(t) ∀Z ∈ E1. The corresponding survival is then
S(t|Z) = S

r(Z)
0 (t) = e−r(Z)Λ0(t). Let ρ(Z1, Z2) = r(Z2)/r(Z1). Then S(t|Z2) =

S(t|Z1)ρ(Z1,Z2). If PH holds on E2, then ∀Z(.) ∈ E2 such that for two constant
stresses Z1 and Z2, Z(t) = Z1 11{0 ≤ t ≤ t1} + Z2 11{t > t1},

λ(t|Z(.)) =

{
λ(t|Z1) = r(Z1)λ0(t), 0 ≤ t ≤ t1

λ(t|Z2) = r(Z2)λ0(t), t > t1

and

S(t|Z(.)) =





S(t|Z1), 0 ≤ t ≤ t1

S(t|Z2)
S(t1|Z1)
S(t1 |Z2

, t > t1
.

1.4.4 Relationships between Sedyakin and PH: MPH models

Bagdonavicius and Nikulin (2002) define a proportional hazard model that
obeys the Sedyakin principle:

Definition 1.4.5 (Modified PH model: MPH) A model is Sedyakin (AGS)
on E and PH on E1 and called MPH if and only if, for two functions r and λ0,

λ(t|Z(.)) = r(Z(t))λ0

(
Λ−1

0

(
Λ(t|Z(.))
r(Z(t))

))
.

If MPH holds on E2 , then ∀Z(.) ∈ E2 such that for two constant stresses
Z1 and Z2:

Z(t) = Z1 11{0 ≤ t ≤ t1} + Z2 11{t > t1}

t2 = S−1((S(t1, Z1))ρ(Z2,Z1))

then

S(t|Z(.)) =

{
S(t|Z1), 0 ≤ t < t1

S(t − t1 + t2|Z2), t ≥ t1
.
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1.4.5 Generalized PH models (GPH) on E
Two distinct generalized PH models are defined, GPH1 and GPH2:

Definition 1.4.6 (GPH1) A model is GPH1if and only if, for two positive
functions r and λ0, the hazard λ verifies

λ(t|Z(.)) = r(Z(t)) ∗ q{Λ(t, Z(.))} ∗ λ0(t)

When q ≡ 1 this is simply a PH model, while λ0(t) ≡ λ0 constant gives the
AFT model.

Definition 1.4.7 (GPH2) A model is GPH2 if and only if, for two positive
functions u and λ0,

λ(t|Z(.)) = u(Z(t), Λ(t|Z(.)) ∗ λ0(t).

λ0(t) ≡ λ0 constant gives a GS model on E , while u(Z, s) = r(Z)q(s) gives a
GPH1 model. Model GPH1 holds on E if and only if there exist two survival
functions G and S0 such that

S(t|Z(.)) = G

{∫ t

0
r(Z(s))dH(S0(s))

}

where H = G−1. Function fG defined as

fG(t|Z(.)) = H(S(t|Z(.))

is called the transfer functional. It is the G-resource used until time t under
stress Z. It is actually a transfer of quantiles.

1.4.6 General models

There are many relationships between those models. One can construct a gen-
eral model that contains most of the models defined above.

1. Accelerated model (AFT)

λ(t|Z) = r(Z)q{S(t|Z)}

2. Generalized proportional models of type 1 (GPH1)

λ(t|Z) = r(Z)q{Λ(t)}

include the following sub-models:

q(v) = 1 (PH)
q(v) = (1 + v)γ+1

q(v) = eγv

q(v) = 1
(1+γv)



Extended Cox and Accelerated Models in Reliability 13

3. Generalized proportional models of type 2 (GPH2)

λ(t|Z) = u{Z, Λ(t|Z)}λ0(t)

whose sub-models correspond to various choices of function u. Statistical in-
ference on those various models may be found in Bagdonavicius and Nikulin
(2002).

1.4.7 Modeling and homogeneity problem

General models, considered here, are very useful not only for construction of
goodness-of-fit tests for the PH model but also they give the possibility to con-
struct goodness-of-fit tests for data homogeneity hypothesis. Following Bagdon-
avicius and Nikulin (2005) we give here three models each of them including
the PH model.

Generalized proportional hazards (GPH) model on E1:

λ(t, |Z) = eβT Z(1 + γeβT ZΛ0(t))
1
γ
−1 ∗ λ0(t).

This model has the following properties on E1: the ratios of the hazard rates
increase, decrease or are constant, the hazard rates and the survival function
do not intersect in the interval (0,∞). Simple cross-effects (SCE) model E1

[Bagdonavičius and Nikulin (2005)]

λ(t, |Z) = eβT Z{1 + e(β+γ)T
Λ0(t)}e−γT Z−1 ∗ λ0(t).

The SCE model has the following properties on E1: the ratios of the hazard rates
increase, decrease or are constant, the hazard rates and the survival function
do not intersect or intersect once in the interval (0,∞). Multiple cross-effects
(MCE) model E1:

λ(t, |Z) = eβT Z
(
1 + γTZΛ0(t) + δT ZΛ2

0(t)
)
λ0(t).

The MCE model has the next properties on E1: the ratios of the hazard rates
increase, decrease or are constant, the hazard rates and the survival function
do not intersect, intersect once or twice in the interval (0,∞).

The parameter γ is one-dimensional for the GPH model and m-dimensional
for the SCE model, the parameter δ is m-dimensional.

The PH model is a particular case with γ = 1 (GPH), γ = 0 (SCE), δ =
γ = 0 (MCE).

The homogeneity (no lifetime regression) takes place if γ = 1, β = 0 (GPH),
γ = 0, β = 0 (SCE), β = δ = γ = 0 (MCE).

At the end let us consider the so called Hsieh models (2001), which is also
a SCE model.
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According to the idea of Hsieh one possible way to obtain a cross-effect of
hazard rates is to take a power function of Λ0:

Λx(t) = r(x1)Λ
ρ(x2)
0 (t), λx(t) = r(x1)ρ(x2)Λ

ρ(x2)−1
0 (t)λ0(t),

where x = (x1, x2), x1, x2 ∈ E1, r(·), ρ(·) : E → R1
+. Using natural parametriza-

tion r(x1) = eβT x1 and ρ(x2) = eγT x2 we have the model

Λx(t) = eβT x1ΛeγT x2

0 (t).

In particular case x1 = x2 = x the obtained model is

λx(t) = e(β+γ)T xΛeγT x−1
0 (t)λ0(t).

For any two covariates x, y the ratio λx(t)/λy(t) is increasing from 0 to ∞ or
decreasing from ∞ to 0. So we have a cross-effect of the hazard rates. See, also
Wu (2004).

1.5 Correlated Survivals

1.5.1 Introduction

Let us first present several examples of data having the structure of correlated
survival data. In diabetic retinopathy, the cluster is constituted by each di-
abetic patient. The survival time is the time to blindness onset for each eye
separately. Two types of covariates may have an impact on the time to onset:
the treatment, called a structural covariate, cluster covariates like sex and age,
and individual covariates like past history of each eye. The time to onset is
censored by death prior to blindness. In animal experiments on litters of rats,
each litter is a cluster, and the treatment is a supposed carcinogenic product
injected regularly to each rat. The survival time is the time to onset of a tu-
mor. Again the structural covariate is the treatment, the individual covariates
are sex, age, weight. The censoring takes place when death occurs before the
onset of a tumor. In genetic epidemiology, the cluster is a pair of twins or a
family. The survival time is the age at onset of a specific chronic disease. The
structural covariates are the position inside the family (father, mother, male
sib,..) and individual covariates are sex, and so on. Time is again censored by
death or lost to follow up. The following picture illustrates the data structure.

��������������������p p p pp p p pp p p pp p p
cluster 1 ... cluster k .................cluster K

n1................ nk ....................... nK
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Classical proposals to take into account the correlation induced by the clus-
ters are frailty or copula models. There are two kinds of frailty well distin-
guished by Parner (1998). First, the shared frailty, more appropriate for tak-
ing into account inhomogeneity than dependence, as it gives the possibility of
estimating the frailty distribution parameter when only one of two twins is ob-
served. And the shared and correlated frailty. Gross and Huber (2002) proposed
a logistic like family model in discrete time, related to hierarchical log-linear
models which is detailed in the next subsection.

1.5.2 Model in discrete time: hierarchical dependencies

Xki is the survival time of subject i in cluster k, and Cki is the associated right
censoring time. Actually, what is observed is:

Tki = Xki ∧ Cki observed duration.
Dki = I{Xki ≤ Cki} death indicator.

Globally data are summarized by the pair of variables (T, D) or else the two-
dimensional process (R, Y ), where R is the couple of the “at risk” and event
processes:

T = {Tki; 1 ≤ k ≤ K ; 1 ≤ i ≤ nk}
D = {Dki; 1 ≤ k ≤ K ; 1 ≤ i ≤ nk}

Rki(t) =
{

1 if Tki ≥ t

0 otherwise

Yki(t) =
{

1 if DkiTki = t
0 otherwise

.

In case of discrete time, if N is the maximum size of the clusters, data are
summarized through two arrays of 0 and 1, of dimension T ×N ×K: RT×N×K,
the at risk array and the event array YT×N×K .

1.5.3 Definition of the models

The model parameters are pr,y(t) such that

P (Y = y|R = r; t) =
1

c(r, t)
exp

{ ∑

0<r′≤r
0≤y′≤r′∧y

pr′,y′(t)

}

and the normalization constant is c(r,t):

c(r, t) = 1 +
∑

s′≤r

exp

{ ∑

0<r′≤r
0<y′′≤r′∧y′

pr′,y′′(t)

}
.
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Each model is characterized by the set R of those parameters pr,y that are equal
to 0 and is thus denoted H(R); the saturated model is the one for which this set
is the empty set ∅. Specially interesting are the so-called hierarchical models
defined below.

Definition 1.5.1 (Hierarchical models H(R)) A model is said hierarchical
if all pr,y such that r /∈ R are equal to 0, where R is a family of subsets of
{1, 2, . . . , N}, such that for any R in R and R′ ⊂ R, R′ ∈ R.

Definition 1.5.2 (Model of order k, Hk) If all pr,y such that
∑

i ri > k are
equal to 0, the corresponding model is called model of order k and called Hk,
as all interactions up to order k are included, while interactions of order greater
than k are excluded.

Models Hk are a special case of hierarchical models. More generally, a model
may be defined by the pair (R,Y) such that pr,y = 0 except if r ∈ R and y ∈ Y ,
y ⊂ Y .

1.5.4 Regression model

Let us now include covariates in the models:
The pr,y are modeled linearly in terms of time t and individual profiles, and

the partial likelihood is a function of the following counts of clusters at time t,

N(r, y, t) = count of clusters s.t.
{

risk set = r
jump set = y

N(r, t) = count of clusters s.t. risk set = r.

1.5.5 Estimation

Theorem 1.5.1 (Sufficient statistics) Under the general model of depen-
dence (R,Y) and some regularity conditions fulfilled, the sufficient statistics
for the parameters of the model are the counts N(r, t) and N(r, y, t) for t ∈
{1, 2, . . . , T} and (r, y) ∈ R⊗ Y.

Under right censoring, the same counts are the only statistics involved in the
partial likelihood. One can prove consistency and asymptotic normality: p∗ =
true set of p parameters (R∗,Y∗) ⊂ (R,Y) ≡ (r∗, y∗) combinations, for which
P ∗(R = r∗) and P ∗(Y = y∗|R = r∗, t) are strictly positive.

Σ = matrix of the second derivatives of the log-likelihood with respect to
the parameters pr∗,y∗ , whose general entry, for pr∗0 ,y∗0

(t), pr∗1,y∗1
(t), is, dropping *

Σpr0,y0 (t),pr1,y1 (t)

=
∑

{r: r≥r0∨r1}

N(r, t){P{Y (t) ≥ y0 ∨ y1)|R(i) = r}

−P{Y (t) ≥ y0|R(t) = r}P{Y (t) ≥ y1|R(t) = r}}.
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As the number of clusters, K, tends to infinity,

N(r, t)
K

a.s.−→ P ∗(r, t),

the true probability that R(t) = r. Similarly,

N(r, y, t)
K

a.s.−→ P ∗(r, y, t),

the true joint probability that R(t) = r and Y (t) = y, for t ∈ {1, 2, . . . , T}.
Consequently:

Σ
K

a.s.−→ Σ∗,

with typical entry:

Σ∗
pr0,y0 (t),pr1,y1 (t)

=
1
K

∑

{r: r≥r0∨r1}

P ∗(r, t){P ∗{Y (i) ≥ y0 ∨ y1)|R(t) = r}

−P ∗{Y (t) ≥ y0|R(t) = r}P ∗{Y (t) ≥ y1|R(t) = r}} .

Theorem 1.5.2 (Consistency and as. normality) If

1. for all (r′, y′) included in the model there exists a pair (r, y), also included
in the model and such that r ⊇ r′ and s ⊇ s′, and P ∗(R = r) and
P ∗(Y = y|R = r, t) are strictly positive,

2. Σ is nonsingular in a neighborhood of the true value p∗ of the parameters,

as K tends to infinity, the partial likelihood estimates p̂K of the parameters p
is consistent and asymptotically normal:

√
K(p̂K − p0)

L−→ N(0, Σ∗−1
).
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