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Abstract

In the general setting of semi-Markov models, the independent competing risks model may be
viewed as a special case where the smallest of potential independent sojourn times leading to different
possible final states is observed. Inference for the general case is valid in this special case, but
estimators specifically derived for this particular case may be used in order to test whether it takes
place or not. The proposed estimators and test are proved to work well in a simulation study. They

are also used to analyze the well known heart transplant data.

1 Introduction

When analyzing a cohort of patients, one is often interested not only in their survival time but also in the
quality of life they are experiencing, as there may happen toxicity, disability, etc ...(Heutte and Huber
(2002)). Usually, there is only a finite number of such states. The process is assumed to be semi-Markov
in order to weaken the often too restrictive Markov assumption. The behavior of such a process is defined
through the initial probabilities on the set of possible states, and the transition functions defined as the
probabilities, starting from any specified state, to reach another state within a certain amount of time.
The set of the transition functions may be replaced by two sets. The first one is the set of direct transition
probabilities p,;» from any state j to any other state j'. The second one is the set of the sojourn times
distributions F;; as functions of the actual state j and the state j' reached from there at the end of the
sojourn (section 2).

The most usual model in this framework is the so-called competing risks model. This model may be
viewed as one where, starting in a specific state j, all states that may be reached directly from j are

in competition: the state j' with the smallest random time W,/ to reach it from j will be the one. It

*MAP 5, FRE CNRS 2428, UFR Biomédicale, Université René Descartes, et U 472 INSERM, France, e-mail:

catherine.huber@univ-paris5.fr.
TMAP 5, FRE CNRS 2428, Université René Descartes, Paris 5, and INRA, Jouy-en-Josas, France
$Université de Caen, TUT, 14 000 Lisieux, France



is well known that the joint distribution and the marginal distribution of the latent sojourn times W
cannot be identified in a general competing risks model (Tsiatis (1975)). In a semi-Markov model as well
as in a competing risks model, only the sub-distribution functions Fj:|; = p;;/ F|;;» are identifiable and it
is always possible to define an independent competing risk (ICR) model by assuming that the variables
Wi, j' = 1,...,m, are independent with distributions F;;; = Fj/;/F};(00). Without an assumption
about their dependence, their joint distribution is not identifiable. Thus a test of an ICR model against
an alternative of a general model is not possible. So we shall always assume an ICR, (Independent Com-

peting Risk) model.

For a general right-censored semi-Markov process, Lagakos, Sommer and Zelen (1978) proposed a
maximum likelihood estimator for the direct transition probabilities and the distribution functions of
the sojourn times, under the assumption of a discrete function with a finite number of jumps. In non-
parametric models for censored counting processes, Gill (1980), Voelkel and Crowley (1986) considered
estimators of the sub-distribution functions Fj/|; = p;; F|;;» and they studied their asymptotic behavior.
Here, we consider maximum likelihood estimation for the general semi-parametric model defined by the
probabilities p;;» and the hazard functions related to the distribution functions F;; (section 4). If the
mean number of transitions by an individual tends to infinity, then, the maximum likelihood estimators
are asymptotically equivalent to those of the uncensored case. Conversely, when the number of transitions
is assumed to be bounded, we define, in section 5, new estimators for a right-censored process. In that
case, the effect of the censoring does not become asymptotically negligible.

Under the ICR assumption, specific estimators of the distribution functions Fj;;; and of the direct
transition probabilities p;;; are deduced from Gill’s estimator of the transition functions Fj;. A com-
parison of those estimators to the estimators for a general semi-Markov process leads to tests for an
ICR model against the semi-Markov alternative (section 6). Simulations of the estimators and of the
test based on the comparison of the estimated transition probabilities are performed in section 7. The

method is used on the Stanford heart transplant data from Kalbfleisch and Prentice (1980).

2 Framework

For each subject i, i = 1,--- ,n, we observe, during a period of time ¢;, K (i) + 1 successive states
J(i) = (Jo(i), J1(7), -+, Jx@i)(7)), where Jo(i) is the initial state, Jx(;) (i) the final state after K (i)
transitions. From now on, let i be fixed so that we skip it in the notation.

The total number of possible states is assumed to be finite and equal to m. The successive observed
sojourn times are denoted X = (X1, Xo, -+, Xk), where X}, is the sojourn time 4 spent in state Ji_1
after (k — 1) transitions, and the cumulative sojourn times are Ty, = X5_, X,.

One must notice that, if ¢ changes state K times, the sojourn time ¢ spent in his last state Jg is generally



right censored by t; — Tk, where t; is the total period of observation for subject i. We simplify the rather

heavy notation for this last duration, and the last state Jx as
X*Eﬁi—TK, J*EJK

The subjects are assumed independent and the probability distribution of the sojourn times absolutely
continuous. The two models we propose for the process describing the states of the patient are renewal

semi-Markov processes. Their behavior is defined through the following quantities:

1. The probabilities of the initial state p = (p1,p2, - , pm):

P = P(J():])v j€{172a"'7m}7
Z p; = L (1)
je{1,2,--- ,m}
2. The transition functions F}/;(t) :
Fi;(t) =P(Jy =, Xp < t|Jhm1 =J) 4,7 €{1,2,--- ,m}. (2)

Equivalent to the set of the transition functions Fj/;, is the set of the transition probabilities, p =
{pjjr » 4.5 € {1,2,--- ,m}, together with the set of the distribution functions F|;;; of the sojourn times

in each state conditional on the final state as defined below:

1. The direct transition probabilities from a state j to another state j’ :
pjj = P(Jk = 5’| k-1 = J), (3)

2. The law of the sojourn time between two states 7 and j’ defined by its distribution function:

Fligr(6) = P(X < It = ok = '), @
where ijj’:17 p]j’ 207 jvj/€{1727"' 7m}‘ (5)
i'=1

The distribution functions Fj;; conditional on states (j,j’) do not depend on the value of k, the rank of
the state reached by the patient along the process, which is a characteristic of a renewal process. Let us
define now the hazard rate conditional on the present state and the next one:

P(t < Xi < t+dt‘Xk >t Jpe1 =7, Jk Zj/)

dt—0




as well as the cumulative conditional hazard:

mmw=éxwwm (7)

Let W; be a sojourn time in state j when no censoring is involved, F} its distribution function, and

Fj = 1 — Fj its survival function, such that

Fj( )= P(W; > x) ZPJJ’FIJJ (8)

J'=1
The potential sojourn time in state j may be right censored by a random variable C; having distribution
function G, density g; and survival function G,. The observed sojourn time in state j is W; A Cj.
A general notation will be F for the survival function corresponding to a distribution function F, so that,

for example, Ejj/ =1~ F);;» and similarly, for the transition functions, Fﬂj = pjjr — Fjr|;-

3 Independent Competing Risks Model

We assume now that, starting from a state j, the potential sojourn times W;;; until reaching each of
the states j’ directly reachable from j are independent random variables having distribution functions
defined through (4). The final state is the one for which the duration is the smallest. One can thus say
that all other durations are right censored by this one. Without restriction of the generality, we assume

that the subject is experiencing his 1th transition. The competing risks model is defined by

Xk = min Wjj/,
j’=1,...m
Je = j suchthat Wy < W, # 7, (9)

where Wj;;, has the distribution function F);;.

In this simple case, independence, both of the subjects and of the potential sojourn times in a given
state, allows us to write down the likelihood as a product of factors dealing separately with the time
elapsed between two specific states (4, j'). For the Independent Competing Risk model, one derives from

(6), (8) and(9) that

Fro®) = PUL=1% s =) = [ (T] Py} a0 (10)

I#
¢
/ )\Uj,(u)e_zf” Mgy W gy,
0

A consequence is that the direct transition probabilities p;;» defined in (3) may be derived from the

probabilities defined in (4),
> A
pijr =PIk = J'Jk = 4) = / A (w)e™ 25" Hos" . (11)
0

In this special case, the likelihood is fully determined by the initial p; and the functions Aj;;, defined in

(6)-



This problem may be treated as m parallel and independent problems of right censored survival

analysis. The only link between them is the derivation of the direct transition probabilities using (11).

4 General Model

The patients are still assumed to be independent, but the potential times for a given subject are no longer
assumed to be independent. We model separately the hazard rate and the transition functions p;, p;;r
and A;;» defined as in (1), (3) and (6). The direct transition probabilities p;;» can no longer be derived
from the hazard rates.They are now free, except for the constraints (5).

The likelihood may be written as a product of terms each of which implies sojourn times exclusively in

one specific state j, L, = H;":l L(j).

For each subject ¢, and for each k € {1,2,--- ,K(i)}, we denote 1 — 0 (i) the censoring indicator of its
sojourn time in the 1t visited state, Jy_1(7), with the convention that dy(i) =1 for every i. If j/ is an
absorbing state, and if Ji (i) = j/, then j' is he last state observed for subject i, k = K (i), and we denote
it X*(i) = 0 and 6 (iy41(7) = 1.

Another convention is that subject i is censored, when the last visited state J*(7) is not absorbing and
the sojourn time in this state X*(4) is strictly positive and we denote 1 — §; the censoring indicator. In
all other cases, in particular if the last visited state is absorbing or if the sojourn time there is equal to

0, we say that the subject is not censored and we thus have §; = 1. We can then write

k
Si(i) = [ o (i), 6 =1{X"(i) = 0}.

k=1
For each state j of {1,2,--- ,m}, we define the following counts where k varies, for each subject i,

between 1 and K (i), i € {1,2,--- ,n}, and « > 0,

Niw(z,5,5) = YJp1(i) = 4, (i) = j'}1{X5(i) < 2},
(12)
}/i,k(xvj7jl) = 1{Jk—l(z) :jv Jk(z) :jl}l{Xk(Z) Z :L'}7
Nf(z,j) = (1—=6){J"(@) = jI{X" (i) <z},
Yi(r,5) = (1—0)H{J (i) = j}{X"(i) > x}.



By summation of the counts thus defined on the indices j’, 4, or k, we get

n K(i)

N(m,j,an) = ZZNzkx]] (13)

N™(z,j) = Z (x,4,5",m)
T

N(z,j,n) = ZNZ”(a:,jHN"C(a:,j),
n K(i)

Ync(xajajl7n) = Z Z}/lk: €T .7 .7

i=1 k=1

Y(z,jn) = Y Y"(x,5.5,n)+ Y Vi@, j).
ji=1 i=1

By taking for « the limiting value oo we define N; (4, ') = N; (00,4, 5'), Nf(4) = Nf(oo,5), N(j,5',n) =
N(oo, 7,7 ,n), N"(j,n) = N"(o0,j,n), so that N(4,j',n) is the number of direct transitions from j to
j' that are fully observed,N(j,n) is the number of sojourn times in state j, whose N"¢(j,n) (nc for
not censored) are fully observed and N€¢(j,n) (¢ for censored) are censored. For x = 0, we denote
Y£(j) = Y£(0,4). The number of individuals initially in state j is N°(j,n) = >, 1{Jo(i) = j}.

The true parameter values are denoted p] and pj s and the true functions of the model are .

F\jj7F G andAO

75"

J'lis

Let I,, = log(L,) and I1,,(j) = log(L,(j)). The log-likelihood relative to state j is proportional to

() = p]N )+ Z N(j,5",n) log(p)

J'=1
n K(Z m

> D Niw(G " Mog(A (X)) = Ay (Xi())]

i=1k=1j'=1

# 3N Gos{ 3 piye XY (14

/=1

= B0)+EG) +150),

Among the sum of four terms giving (14), let [ be the first term relative to the initial state, ("¢ (nc for
non censored) the sum of the second and third terms, which involve exclusively fully observed sojourn
times in state j, and finally ¢ (¢ for censored) the last term which deals with censored sojourn times in
state j.

We denote K,, = max;—12... »n K(i) and nk, = i, K(i) respectively the maximum number of
transitions and the total number of transitions for the n subjects. We consider two different designs of
experiments, whether or not observations are stopped after a fixed amount K of direct transitions.

It is obvious that if the densities f; of the sojourn times, without censoring, for every state j, are

strictly positive on ]0;to[ for some ty > 0, and if the distribution functions G; of the censoring times



are such that G;(t) < 1 for all t > 0, the maximal number K, = max; K (i) of transitions experienced
by a subject tends to infinity when n grows. If moreover the mean number of transitions K, goes also
to infinity, then the term relative to censored times [¢(j) is the sum of terms of order n while the term

I"¢(5) is a sum of terms of order nk,. Therefore we have

Proposition 1 Under the assumptions K, — oo, and

N"™(j,n) 0 ,
E— — >0’ c 1,2,"'77’”7
- qj jed }
then
ln : [me(q
lim E) = lim "_(‘7)

and the maximum likelihood estimators are asymptotically equivalent to

S NG
. N (o)
N * dN(s,j,j',n)
A (x = )
77 ( ) 0 Ync(sv‘]’]/7n)
= dN (s, 3, 5')
Fijy (@) = H{l Yne(s,5,4',n) }

s<z

5 Case of a bounded number of transitions

We now assume that the number of transitions is bounded by a finite number K fixed in advance.
For each subject ¢ = 1,--- ,n, the observation ends at time ¢; = ZK(Z) Xy (i) if K(i) = K or if Jg ()

is an absorbing state, and at time ¢; where there is a right censoring in the K (4 )th visited state, K (i) < K.

Using notations in (13), the likelihood term relative to the initial state 7 may be written
() = N°(jn)log(p;),

the terms relative to the fully observed sojourn times in state j is

ey Z { N(j,4',n)log(pjj)
—1

+3

1=1

<.

Ni ki3 08 (N g3 (Xk(0))) = Ay (X ()]},

Mw

ES
I
—

and the term relative to the censored sojourn times in state j is
n m
> NF(G)log{ D pigreMar KT,
i=1 §'=1
The score equations for p;;; and Aj;;» do not lead to explicit solutions because they involve the survival

function fj and the transition function Fﬂj. We define estimators Dy, j;+ and /A\ny‘ i+ by plugging in the



score equations the Kaplan-Meier estimator of Fj and the estimator of F;/; given by Gill (1980),

- dN(y,j,n)}
F,(x) = A CAALL 15
yifl?
2 Y=~ _|dN(y,4,5";n)
E oz :/Fn. bl APAN LU 16
Wi ‘j( ) 0 ,](y ) Y(y,j,n) ( )
We obtain the estimators
. N°(j,n)
Pnj = —n
P N(j,j',n) + N(j,5',n) an
NeGon) ¥ NeGm)
~ ‘ dN(y,j,5',n)
NG / ne(y 7 3 S
o Y"e(y,4,5',n) +Y<(y,4,5,n)
with
— . Py (X7(0)
Ve(y.g.j'n) = Y YVi(y.g) =Ll
i=1 Fr i (X*(i))
ey . - /. Fn,"’ (X*(Z))
Ne(j,j'sn) = ZNi(J)gjlji.-
i=1 Fo i (X*(3))

The variable (n'/2(p,, j;»—pY;/));» and the process (n2(A, 55 —Af,;));» are asymptotically Gaussian,

on every interval [0,7] such that [ (F?,Uéjo-)*l dA?’Ij < oo (Pons (2003)).

6 A Test of the Hypothesis of Independent Competing Risks.

In the ICR case, the initial probabilities jointly with the survival functions thz of the sojourn times
conditional on states on both ends, are sufficient to determine completely the law of the process. In the
general case, however, the two sets of parameters p;; and E j;+ are independent and may be modeled

separately. Our aim is to derive a test of the hypothesis of Independent Competing Risks (ICR):

Hy :  The process is ICR
H; : The process is not ICR

The Kaplan-Meier estimator ﬁn,j of F‘j, given in (15), and the estimator ﬁn,j’\j of Fj;, given in
(16), are consistent and asymptotically Gaussian both under Hy and under H;. It is also true for the
straightforward estimator p,, ; of the initial probabilities. From those estimators, one may derive general
estimators of the transition probability p;; and of the survival function E j; of the time elapsed between
two successive jumps in states j and j'. For these estimators, we shall use the same notations as the

estimators of p;;» and E j;+ defined in section 5, though they are now given by

P g = max F (1) (18)



F ()

Foin(t)=1— -2
n,|jj ( ) Pris

(19)

In the independent competing risk model, the transition probability Fj; satisfies (10) and thus may

be estimated as

EXC, ) = */ H Frji(s) dFyjyi(s) (20)

Jr#5
1 /f H ES =~
= T = Fo15(8) Flng(s7) dAg joi5(s)
Hj” pn,jj 0 £
where
~ ¢ ) dN (s,j,7",n
An,j,lj@):/ Y (5], )>0}(7) (21)
0 (Svj7 )

is the estimator of the cumulative hazard function A in the general model. A competitor to p,, ;i is

n,j'1j

deduced as
5533 mtaxF n.j’ |J( )- (22)

Proposition 2 If p?j/ > 0, Vn(Pnjj — p?j/) is asymptotically distributed as a nmormal random wvector

with mean 0, variances and covariances

2., = i 00; 70 (s) — p? _QdF]Q(S) -0 0 70 (s
37’ 779/0 @?(S)F?(s) {(FHJ( ) p]’\ﬂ) F(J)(S) +{FJ( )+2(FJ |J( s) — p]’\J)}dFj/\J( )}a
b2 o L 1 ) 0 0 AFY(s)

3’3" W?/o 63(8)73(3) {(FJ’IJ( ) = p] 1) (E g5 (8) = Pjo5) F?(s)

+(F15(9) = o0, dF o () + (Foyy(5) = 0 )} dF s (s) }

Moreover, \/n(pE p(])-j,) s asymptotically distributed as a centered Gaussian variable.

pn]]

Estimators of the asymptotic variance and covariances of (P, j;/); c.s(;) may be obtained by replacing
the functions F , FY, J); and AY, 711; by their estimators in the general model, (15), (16) and (21). Due to
their intricate formulas, it seems difficult to use an empirical estimator of the asymptotic variance of
pn ;- and a bootstrap estimator should be preferred. Asymptotic confidence intervals for pj ;- at the level
« are deduced from the (1 — a/2)-quantile ¢, of their boostrap distributions, I,, ;; () in the general case
and TE¢ 7+ () under the null hypothesis of Independent Competing Risks.

A test of the Independent Competing Risks hypothesis may be defined by rejecting Hy if I, ;7 (o) and
Ifj % () are not overlapping for some j'. As the estimators of the parameters p?j, are not independent,

the level a* of this test with critical region
Ryj(a) = Ny Ry (a), where Ry (a) = {1 () N LES, (@) # 0},

satisfies @ > 1 — (1 — )™



7 Simulation results and example

The following simulations illustrate the preceding paragraph in a simple case. We consider a three states
model, with transition probabilities p12, p13 and ps3. From state 1 to state 2 the distribution function
of the sojourn time in state 1 follows a Weibull distribution, with shape parameter equal to a1 and
scale parameter A1a, so that F|12(t) = exp{—A12t)*12}, and the analogues for the transition from state
1 to state 3 (Table 1). We assume that the sojourn time in state 1 is censored by an exponential with
hazard rate A.ensi, as well as the sojourn time in state 2, with parameter A.c,s2. Moreover, the initial
probabilities are equal in all four simulations to p; = P(Jy = 1) = 0.8 and

pa = P(Jp = 1) = 0.2. The amount of censoring while in state 1, resulting from the choice of the
parameters, ranges from 7% to 30%. The first two simulations deal with non ICR models and the two
following ones with ICR models. In the non ICR case, p12, p13 and psog3 are chosen to be equal respectively
to 0.75, 0.25 and 1, while they are determined by the sojourn time distributions in the ICR case. The
transition probabilities and the survival functions are estimated from simulated samples of size n = 500,
with 500 replicates for each model, assuming an ICR model (assumption Hp) or a general model. The
estimates of the transition probabilities are based on (17) and (18) for the general case and on (22) for
the ICR case. The estimates of the survival functions are based on (16) for the general case and on the

Kaplan-Meier estimator of section 3 for the ICR case.

insert here [table 1, 2 and 3]

Tables 2 and 3 give the median and the 95%-confidence intervals for the transition probabilities over the
500 replications. They show a serious gap between the simulated confidence intervals of the transition
probabilities obtained using the ICR and the general estimators under the alternative. The estimators
(17) and (18) always give the same numerical value. For the simulations under Hj, both confidence
intervals are widely overlapping and the general estimator of the transition probabilities is always more
precise than the ICR estimator.

The confidence intervals of the survival functions in the non ICR models happened to be very close for
the estimates of 15 in simulations 1 and 2 (Figures 2 and 4). A test for Hy based on their comparison
would lead to a wrong conclusion. A test for Hy based on a comparison of the estimated survival func-
tions would again be misleading in the ICR model 4 (Figures 8) for F'13. In the ICR models, the general
estimator of the survival functions Fjj/ have always less bias and smaller confidence intervals than the
Kaplan-Meier estimator. This poor performance of the Kaplan-Meier estimator seems to be an effect of
the large number of censoring times in the competing risks models, the actual censoring times and the
sojourn times before a transitions to the other state j7 # j’. The estimator (20) has also be computed
for the ICR case, it presents a strong bias in all the simulated models, as an effect of the censorship in

each term of the product.

10



insert here [Figures 1 to 6]

The method has been applied to the heart transplant data (Kalbfleisch and Prentice, 1980) where
patients evolved in a three states model: waiting for a heart transplant (state 1), heart transplanted
(state 2) or dead (state 3). The total number of patients was n = 103 and all were in state 1 at tg.
The patients had 69 transitions from state 1 to state 2, 30 transitions from state 1 to state 3 and 45
transitions from state 2 to state 3, moreover 4 patients were censored in state 1 and 24 were censored
in state 2. The estimates of the transition probabilities (18) for the general case and on (22) for the
ICR case and their bootstrap confidence intervals were computed : pj2 = 0.6699029, with confidence
interval (0.5825243,0.7572816) and pii® = 0.4468599, with confidence interval (0.3109207,0.5773497),
P13 = 0.2912621, with confidence interval (0.2038835,0.3786408) and piiY = 0.5386473, with confidence
interval (0.4000553,0.6703223), p13 = 0.8134351, with confidence interval (0.6716397,0.9397728). The
hypothesis of ICR for the transitions from 1 was therefore rejected for both states 2 and 3.

insert here [figure 9]
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Table 1. Parameters of the four simulations.

a2 | A2 | @13 | A13 | Acenst | Acens2
Simulation 1 (non ICR) and 3 (ICR) | 1 | 0.5 | 1 4 0.2 0.2
Simulation 2 (non ICR) and 4 (ICR) | 1.5 | 0.5 | 1.5 4 0.2 0.2

Table 2. Estimation of the transition probabilities.
(non ICR cases)
P12
Simulation | True value ICR quantiles general quantiles
0.025 | 0.5 0.975 | 0.025 | 0.5 | 0.975
1 0.75 0.080 | 0.111 | 0.143 | 0.694 | 0.747 | 0.787
2 0.75 0.025 | 0.042 | 0.062 | 0.702 | 0.748 | 0.791
P13
Simulation | True value ICR quantiles general quantiles
0.025 | 0.5 0.975 | 0.025 | 0.5 | 0.975
1 0.25 0.849 | 0.882 | 0.9123 | 0.207 | 0.249 | 0.294
2 0.25 0.932 | 0.953 | 0.973 | 0.209 | 0.250 | 0.295

Table 3. Estimation of the transition probabilities.
(ICR cases)
P12
Simulation | True value ICR quantiles general quantiles
0.025 0.5 0.975 | 0.025 | 0.5 | 0.975
3 0.111 0.053 | 0.110 | 0.193 | 0.075 | 0.109 | 0.064
4 0.042 0.006 | 0.0400 | 0.096 | 0.019 | 0.041 | 0.145
P13
Simulation | True value ICR quantiles general quantiles
0.025 0.5 0.975 | 0.025 | 0.5 | 0.975
3 0.889 0.802 | 0.887 | 0.944 | 0.856 | 0.889 | 0.922
4 0.958 0.902 | 0.958 | 0.992 | 0.936 | 0.958 | 0.978

12
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Figure 1: Histograms of transition probabilities estimations using general and ICR models. Simulation 1.

General and ICR estimates (0.025, 0.5 and 0.975 quantiles) compared to true survival
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Figure 2: Comparison of survival curves estimations using general and ICR estimators. Simulation 1.

13



survival from 1 to 2

2 g
o
. 8
g
3
o
= =3
)
il In :
- __ -
0.0 0.02 0.04 0.06 0.08 0.10 012
pl2ICR
s
g
= Q
g
- g
g
o
8
o
L Q
8
o
]
|| |
R p— | o
0.88 0.90 0.92 0.94 0.96 0.98 1.00
p13ICR

006 008 0.16

010 012 014

pi2.general

|
0.84

086 088 090 092 094

p13.general
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General and ICR estimates (0.025, 0.5 and 0.975 quantiles) compared to true survival
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Figure 4: Comparison of survival curves estimations using general and ICR, estimators. Simulation 2.
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Figure 5: Histograms of transition probabilities estimations using general and ICR models. Simulation 3.

General and ICR estimates (0.025, 0.5 and 0.925 quantiles) compared to true survival
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Figure 7: Histograms of transition probabilities estimations using general and ICR models. Simulation 4.

General and ICR estimates (0.025, 0.5 and 0.975 quantiles) compared to true survival
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Figure 8: Comparison of survival curves estimations using general and ICR estimators. Simulation 4.
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General and ICR estimates of the transition functions from state 1 to states 2 and 3
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Figure 9: Estimates of transition functions for heart transplant data.
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