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Abstract

In the general setting of semi-Markov models, the independent competing risks model may be

viewed as a special case where the smallest of potential independent sojourn times leading to different

possible final states is observed. Inference for the general case is valid in this special case, but

estimators specifically derived for this particular case may be used in order to test whether it takes

place or not. The proposed estimators and test are proved to work well in a simulation study. They

are also used to analyze the well known heart transplant data.

1 Introduction

When analyzing a cohort of patients, one is often interested not only in their survival time but also in the

quality of life they are experiencing, as there may happen toxicity, disability, etc . . .(Heutte and Huber

(2002)). Usually, there is only a finite number of such states. The process is assumed to be semi-Markov

in order to weaken the often too restrictive Markov assumption. The behavior of such a process is defined

through the initial probabilities on the set of possible states, and the transition functions defined as the

probabilities, starting from any specified state, to reach another state within a certain amount of time.

The set of the transition functions may be replaced by two sets. The first one is the set of direct transition

probabilities pjj′ from any state j to any other state j′. The second one is the set of the sojourn times

distributions F|jj′ as functions of the actual state j and the state j′ reached from there at the end of the

sojourn (section 2).

The most usual model in this framework is the so-called competing risks model. This model may be

viewed as one where, starting in a specific state j, all states that may be reached directly from j are

in competition: the state j′ with the smallest random time Wjj′ to reach it from j will be the one. It
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is well known that the joint distribution and the marginal distribution of the latent sojourn times Wjj′

cannot be identified in a general competing risks model (Tsiatis (1975)). In a semi-Markov model as well

as in a competing risks model, only the sub-distribution functions Fj′|j = pjj′F|jj′ are identifiable and it

is always possible to define an independent competing risk (ICR) model by assuming that the variables

Wjj′ , j′ = 1, . . . ,m, are independent with distributions F|jj′ = Fj′|j/Fj′|j(∞). Without an assumption

about their dependence, their joint distribution is not identifiable. Thus a test of an ICR model against

an alternative of a general model is not possible. So we shall always assume an ICR (Independent Com-

peting Risk) model.

For a general right-censored semi-Markov process, Lagakos, Sommer and Zelen (1978) proposed a

maximum likelihood estimator for the direct transition probabilities and the distribution functions of

the sojourn times, under the assumption of a discrete function with a finite number of jumps. In non-

parametric models for censored counting processes, Gill (1980), Voelkel and Crowley (1986) considered

estimators of the sub-distribution functions Fj′|j = pjj′F|jj′ and they studied their asymptotic behavior.

Here, we consider maximum likelihood estimation for the general semi-parametric model defined by the

probabilities pjj′ and the hazard functions related to the distribution functions F|jj′ (section 4). If the

mean number of transitions by an individual tends to infinity, then, the maximum likelihood estimators

are asymptotically equivalent to those of the uncensored case. Conversely, when the number of transitions

is assumed to be bounded, we define, in section 5, new estimators for a right-censored process. In that

case, the effect of the censoring does not become asymptotically negligible.

Under the ICR assumption, specific estimators of the distribution functions F|jj′ and of the direct

transition probabilities pjj′ are deduced from Gill’s estimator of the transition functions Fj′|j . A com-

parison of those estimators to the estimators for a general semi-Markov process leads to tests for an

ICR model against the semi-Markov alternative (section 6). Simulations of the estimators and of the

test based on the comparison of the estimated transition probabilities are performed in section 7. The

method is used on the Stanford heart transplant data from Kalbfleisch and Prentice (1980).

2 Framework

For each subject i, i = 1, · · · , n, we observe, during a period of time ti, K(i) + 1 successive states

J(i) = (J0(i), J1(i), · · · , JK(i)(i)), where J0(i) is the initial state, JK(i)(i) the final state after K(i)

transitions. From now on, let i be fixed so that we skip it in the notation.

The total number of possible states is assumed to be finite and equal to m. The successive observed

sojourn times are denoted X = (X1,X2, · · · ,XK), where Xk is the sojourn time i spent in state Jk−1

after (k − 1) transitions, and the cumulative sojourn times are Tk = Σk
�=1X�.

One must notice that, if i changes state K times, the sojourn time i spent in his last state JK is generally
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right censored by ti −TK , where ti is the total period of observation for subject i. We simplify the rather

heavy notation for this last duration, and the last state JK as

X∗ ≡ ti − TK , J∗ ≡ JK .

The subjects are assumed independent and the probability distribution of the sojourn times absolutely

continuous. The two models we propose for the process describing the states of the patient are renewal

semi-Markov processes. Their behavior is defined through the following quantities:

1. The probabilities of the initial state ρ = (ρ1, ρ2, · · · , ρm):

ρj = P (J0 = j), j ∈ {1, 2, · · · ,m},∑
j∈{1,2,··· ,m}

ρj = 1. (1)

2. The transition functions Fj′|j(t) :

Fj′|j(t) = P (Jk = j′,Xk ≤ t|Jk−1 = j) , j, j′ ∈ {1, 2, · · · ,m}. (2)

Equivalent to the set of the transition functions Fj′|j , is the set of the transition probabilities, p =

{pjj′ , j, j′ ∈ {1, 2, · · · ,m}, together with the set of the distribution functions F|jj′ of the sojourn times

in each state conditional on the final state as defined below:

1. The direct transition probabilities from a state j to another state j′ :

pjj′ = P (Jk = j′|Jk−1 = j), (3)

2. The law of the sojourn time between two states j and j′ defined by its distribution function:

F|jj′(t) = P (Xk ≤ t|Jk−1 = j, Jk = j′), (4)

where
m∑

j′=1

pjj′ = 1 , pjj′ ≥ 0 , j, j′ ∈ {1, 2, · · · ,m}. (5)

The distribution functions F|jj′ conditional on states (j, j′) do not depend on the value of k, the rank of

the state reached by the patient along the process, which is a characteristic of a renewal process. Let us

define now the hazard rate conditional on the present state and the next one:

λ|jj′(t) = lim
dt−→0

P (t ≤ Xk ≤ t + dt|Xk ≥ t, Jk−1 = j, Jk = j′)
dt

, (6)
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as well as the cumulative conditional hazard:

Λ|jj′(t) =
∫ t

0

λ|jj′(u)du. (7)

Let Wj be a sojourn time in state j when no censoring is involved, Fj its distribution function, and

F j ≡ 1 − Fj its survival function, such that

F j(x) ≡ P (Wj > x) =
m∑

j′=1

pjj′F |jj′(x). (8)

The potential sojourn time in state j may be right censored by a random variable Cj having distribution

function Gj , density gj and survival function Gj . The observed sojourn time in state j is Wj ∧ Cj .

A general notation will be F for the survival function corresponding to a distribution function F , so that,

for example, F |jj′ = 1 − F|jj′ and similarly, for the transition functions, F j′|j = pjj′ − Fj′|j .

3 Independent Competing Risks Model

We assume now that, starting from a state j, the potential sojourn times Wjj′ until reaching each of

the states j′ directly reachable from j are independent random variables having distribution functions

defined through (4). The final state is the one for which the duration is the smallest. One can thus say

that all other durations are right censored by this one. Without restriction of the generality, we assume

that the subject is experiencing his kth transition. The competing risks model is defined by

Xk = min
j′=1,...,m

Wjj′ ,

Jk = j′ such that Wjj′ < Wjj” , j” �= j′, (9)

where Wjj′ has the distribution function F|jj′ .

In this simple case, independence, both of the subjects and of the potential sojourn times in a given

state, allows us to write down the likelihood as a product of factors dealing separately with the time

elapsed between two specific states (j, j′). For the Independent Competing Risk model, one derives from

(6), (8) and(9) that

Fj′|j(t) = P (Jk = j′,Xk ≤ t|Jk−1 = j) =
∫ t

0

{
∏

j” �=j′
F |jj”(u) } dF|jj′(u) (10)

=
∫ t

0

λ|jj′(u)e−
∑

j” Λ|jj” (u)du.

A consequence is that the direct transition probabilities pjj′ defined in (3) may be derived from the

probabilities defined in (4),

pjj′ = P (Jk+1 = j′|Jk = j) =
∫ ∞

0

λ|jj′(u)e−
∑

j” Λ|jj” (u)du. (11)

In this special case, the likelihood is fully determined by the initial ρj and the functions λ|jj′ defined in

(6).
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This problem may be treated as m parallel and independent problems of right censored survival

analysis. The only link between them is the derivation of the direct transition probabilities using (11).

4 General Model

The patients are still assumed to be independent, but the potential times for a given subject are no longer

assumed to be independent. We model separately the hazard rate and the transition functions ρj , pjj′

and λ|jj′ defined as in (1), (3) and (6). The direct transition probabilities pjj′ can no longer be derived

from the hazard rates.They are now free, except for the constraints (5).

The likelihood may be written as a product of terms each of which implies sojourn times exclusively in

one specific state j, Ln =
∏m

j=1 Ln(j).

For each subject i, and for each k ∈ {1, 2, · · · ,K(i)}, we denote 1 − δk(i) the censoring indicator of its

sojourn time in the kth visited state, Jk−1(i), with the convention that δ0(i) ≡ 1 for every i. If j′ is an

absorbing state, and if Jk(i) = j′, then j′ is he last state observed for subject i, k ≡ K(i), and we denote

it X∗(i) = 0 and δK(i)+1(i) = 1.

Another convention is that subject i is censored, when the last visited state J∗(i) is not absorbing and

the sojourn time in this state X∗(i) is strictly positive and we denote 1 − δi the censoring indicator. In

all other cases, in particular if the last visited state is absorbing or if the sojourn time there is equal to

0, we say that the subject is not censored and we thus have δi = 1. We can then write

δk(i) =
k∏

k′=1

δk′(i), δi = 1{X∗(i) = 0}.

For each state j of {1, 2, · · · ,m}, we define the following counts where k varies, for each subject i,

between 1 and K(i), i ∈ {1, 2, · · · , n}, and x ≥ 0,

Ni,k(x, j, j′) = 1{Jk−1(i) = j, Jk(i) = j′}1{Xk(i) ≤ x},
(12)

Yi,k(x, j, j′) = 1{Jk−1(i) = j, Jk(i) = j′}1{Xk(i) ≥ x},

N c
i (x, j) = (1 − δi)1{J∗(i) = j}1{X∗(i) ≤ x},

Y c
i (x, j) = (1 − δi)1{J∗(i) = j}1{X∗(i) ≥ x}.
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By summation of the counts thus defined on the indices j′, i, or k, we get

N(x, j, j′, n) =
n∑

i=1

K(i)∑
k=1

Ni,k(x, j, j′), (13)

Nnc(x, j) =
m∑

j′=1

N(x, j, j′, n),

N(x, j, n) =
n∑

i=1

Nnc
i (x, j) + Nnc(x, j),

Y nc(x, j, j′, n) =
n∑

i=1

K(i)∑
k=1

Yi,k(x, j, j′),

Y (x, j, n) =
m∑

j′=1

Y nc(x, j, j′, n) +
n∑

i=1

Y c
i (x, j).

By taking for x the limiting value ∞ we define Ni,k(j, j′) = Ni,k(∞, j, j′), N c
i (j) = N c

i (∞, j), N(j, j′, n) =

N(∞, j, j′, n), Nnc(j, n) = Nnc(∞, j, n), so that N(j, j′, n) is the number of direct transitions from j to

j′ that are fully observed,N(j, n) is the number of sojourn times in state j, whose Nnc(j, n) (nc for

not censored) are fully observed and N c(j, n) (c for censored) are censored. For x = 0, we denote

Y c
i (j) = Y c

i (0, j). The number of individuals initially in state j is N0(j, n) =
∑n

i=1 1{J0(i) = j}.
The true parameter values are denoted ρ0

j and p0
jj′ , and the true functions of the model are F

0

j′|j ,

F
0

|jj′ , F
0

j , G
0

j and Λ0
|jj′ .

Let ln = log(Ln) and ln(j) = log(Ln(j)). The log-likelihood relative to state j is proportional to

ln(j) = ρjN
0(j, n) +

m∑
j′=1

N(j, j′, n) log(pjj′)

+
n∑

i=1

K(i)∑
k=1

m∑
j′=1

Ni,k(j, j′)[log(λ|jj′(Xk(i))) − Λ|jj′(Xk(i))]

+
n∑

i=1

N c
i (j)[log{

m∑
j′=1

pjj′e−Λ|jj′ (X
∗(i))}] (14)

= l0n(j) + lnc
n (j) + lcn(j),

Among the sum of four terms giving (14), let l0n be the first term relative to the initial state, lnc
n (nc for

non censored) the sum of the second and third terms, which involve exclusively fully observed sojourn

times in state j, and finally lcn (c for censored) the last term which deals with censored sojourn times in

state j.

We denote Kn = maxi=1,2··· ,n K(i) and nKn =
∑n

i=1 K(i) respectively the maximum number of

transitions and the total number of transitions for the n subjects. We consider two different designs of

experiments, whether or not observations are stopped after a fixed amount K of direct transitions.

It is obvious that if the densities fj of the sojourn times, without censoring, for every state j, are

strictly positive on ]0; t0[ for some t0 > 0, and if the distribution functions Gj of the censoring times
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are such that Gj(t) < 1 for all t > 0, the maximal number Kn = maxi K(i) of transitions experienced

by a subject tends to infinity when n grows. If moreover the mean number of transitions Kn goes also

to infinity, then the term relative to censored times lcn(j) is the sum of terms of order n while the term

lnc
n (j) is a sum of terms of order nKn. Therefore we have

Proposition 1 Under the assumptions Kn → ∞, and

Nnc(j, n)
nKn

−→ q0
j > 0, j ∈ {1, 2, · · · ,m},

then

lim
n−→∞

ln(j)
nKn

= lim
n−→∞

lnc
n (j)
nKn

.

and the maximum likelihood estimators are asymptotically equivalent to

p̂jj′ =
N(j, j′, n)
Nnc(j, n)

,

Λ̂|jj′(x) =
∫ x

0

dN(s, j, j′, n)
Y nc(s, j, j′, n)

,

F̂ |jj′(x) =
∏
s≤x

{
1 − dN(s, j, j′)

Y nc(s, j, j′, n)

}
.

5 Case of a bounded number of transitions

We now assume that the number of transitions is bounded by a finite number K fixed in advance.

For each subject i = 1, · · · , n, the observation ends at time ti =
∑K(i)

k=1 Xk(i) if K(i) = K or if JK(i)

is an absorbing state, and at time ti where there is a right censoring in the K(i)th visited state, K(i) < K.

Using notations in (13), the likelihood term relative to the initial state j may be written

l0n(j) = N0(j, n) log(ρj),

the terms relative to the fully observed sojourn times in state j is

lnc
n (j) =

m∑
j′=1

{
N(j, j′, n) log(pjj′)

+
n∑

i=1

K∑
k=1

Ni,k(j, j′)[log(λ|jj′(Xk(i))) − Λ|jj′(Xk(i))]
}

,

and the term relative to the censored sojourn times in state j is

lcn(j) =
n∑

i=1

N c
i (j)[log{

m∑
j′=1

pjj′e−Λ|jj′ (X
∗(i))}].

The score equations for pjj′ and Λjj′ do not lead to explicit solutions because they involve the survival

function F j and the transition function F j′|j . We define estimators p̂n,jj′ and Λ̂n,|jj′ by plugging in the
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score equations the Kaplan-Meier estimator of F j and the estimator of Fj′|j given by Gill (1980),

F̂n,j(x) =
∏
y≤x

{
1 − dN(y, j, n)

Y (y, j, n)

}
, (15)

F̂n,j′|j(x) =
∫ x

0

F̂n,j(y−)
dN(y, j, j′, n)

Y (y, j, n)
. (16)

We obtain the estimators

ρ̂n,j =
N0(j, n)

n
,

p̂n,jj′ =
N(j, j′, n) + N̂ c(j, j′, n)

Nnc(j, n) + N c(j, n)
, (17)

Λ̂n,|jj′(x) =
∫ x

0

dN(y, j, j′, n)

Y nc(y, j, j′, n) + Ŷ c(y, j, j′, n)
,

with

Ŷ c(y, j, j′, n) =
n∑

i=1

Y c
i (y, j)

F̂n,j′|j(X∗(i))

F̂n,j(X∗(i))
,

N̂ c(j, j′, n) =
n∑

i=1

N c
i (j)

F̂n,j′|j(X∗(i))

F̂n,j(X∗(i))
.

The variable (n1/2(p̂n,jj′−p0
jj′))j′ and the process {n1/2(Λ̂n,|jj′−Λ0

|jj′))j′ are asymptotically Gaussian,

on every interval [0, τ ] such that
∫ τ

0
(F

0

j′|jG
0

j )
−1 dΛ0

j′|j < ∞ (Pons (2003)).

6 A Test of the Hypothesis of Independent Competing Risks.

In the ICR case, the initial probabilities jointly with the survival functions F |jj′ of the sojourn times

conditional on states on both ends, are sufficient to determine completely the law of the process. In the

general case, however, the two sets of parameters pjj′ and F |jj′ are independent and may be modeled

separately. Our aim is to derive a test of the hypothesis of Independent Competing Risks (ICR):

H0 : The process is ICR

H1 : The process is not ICR

The Kaplan-Meier estimator ̂̄Fn,j of F̄j , given in (15), and the estimator F̂n,j′|j of Fj′|j , given in

(16), are consistent and asymptotically Gaussian both under H0 and under H1. It is also true for the

straightforward estimator ρ̂n,j of the initial probabilities. From those estimators, one may derive general

estimators of the transition probability pjj′ and of the survival function F |jj′ of the time elapsed between

two successive jumps in states j and j′. For these estimators, we shall use the same notations as the

estimators of pjj′ and F |jj′ defined in section 5, though they are now given by

p̂n,jj′ = max
t

F̂n,j′|j(t) (18)
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F̂n,|jj′(t) = 1 − F̂n,j′|j(t)
p̂n,jj′

. (19)

In the independent competing risk model, the transition probability Fj′|j satisfies (10) and thus may

be estimated as

F̂RC
n,j′|j(t) = −

∫ t

0

∏
j” �=j′

F̂n,|jj”(s) dF̂n,|jj′(s) (20)

=
1∏

j” p̂n,jj”

∫ t

0

∏
j” �=j′

F̂n,j”|j(s) F̂n,j(s−) dΛ̂n,j′|j(s),

where

Λ̂n,j′|j(t) =
∫ t

0

1{Y (s, j, n) > 0}dN(s, j, j′, n)
Y (s, j, n)

(21)

is the estimator of the cumulative hazard function Λn,j′|j in the general model. A competitor to p̂n,jj′ is

deduced as

p̂RC
n,jj′ = max

t
F̂RC

n,j′|j(t). (22)

Proposition 2 If p0
jj′ > 0,

√
n(p̂n,jj′ − p0

jj′) is asymptotically distributed as a normal random vector

with mean 0, variances and covariances

σ2
jj′ =

1
π0

j

∫ ∞

0

1

G
0

j (s)F
0

j (s)

{
(F

0

j′|j(s) − p0
j′|j)

2
dF 0

j (s)

F
0

j (s)
+ {F 0

j (s) + 2(F
0

j′|j(s) − p0
j′|j)} dF

0

j′|j(s)

}
,

σ2
jj′j” =

1
π0

j

∫ ∞

0

1

G
0

j (s)F
0

j (s)

{
(F

0

j′|j(s) − p0
j′|j)(F

0

j”|j(s) − p0
j”|j)

dF 0
j (s)

F
0

j (s)

+(F
0

j′|j(s) − p0
j′|j)} dF

0

j”|j(s) + (F
0

j”|j(s) − p0
j”|j)} dF

0

j′|j(s)
}

.

Moreover,
√

n(p̂RC
n,jj′ − p0

jj′) is asymptotically distributed as a centered Gaussian variable.

Estimators of the asymptotic variance and covariances of (p̂n,jj′)j′∈J(j) may be obtained by replacing

the functions F
0

j , F 0
j′|j and Λ0

j′|j by their estimators in the general model, (15), (16) and (21). Due to

their intricate formulas, it seems difficult to use an empirical estimator of the asymptotic variance of

p̂RC
n,jj′ and a bootstrap estimator should be preferred. Asymptotic confidence intervals for p0

jj′ at the level

α are deduced from the (1−α/2)-quantile cα of their boostrap distributions, In,jj′(α) in the general case

and IRC
n,jj′(α) under the null hypothesis of Independent Competing Risks.

A test of the Independent Competing Risks hypothesis may be defined by rejecting H0 if In,jj′(α) and

IRC
n,jj′(α) are not overlapping for some j′. As the estimators of the parameters p0

jj′ are not independent,

the level α∗ of this test with critical region

Rnj(α) = ∩m
j′=1Rnjj′(α), where Rnjj′(α) = {In,jj′(α) ∩ IRC

n,jj′(α) �= ∅},

satisfies α∗ ≥ 1 − (1 − α)m.
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7 Simulation results and example

The following simulations illustrate the preceding paragraph in a simple case. We consider a three states

model, with transition probabilities p12, p13 and p23. From state 1 to state 2 the distribution function

of the sojourn time in state 1 follows a Weibull distribution, with shape parameter equal to α12 and

scale parameter λ12, so that F |12(t) = exp{−λ12t)α12}, and the analogues for the transition from state

1 to state 3 (Table 1). We assume that the sojourn time in state 1 is censored by an exponential with

hazard rate λcens1, as well as the sojourn time in state 2, with parameter λcens2. Moreover, the initial

probabilities are equal in all four simulations to ρ1 ≡ P (J0 = 1) = 0.8 and

ρ2 ≡ P (J0 = 1) = 0.2. The amount of censoring while in state 1, resulting from the choice of the

parameters, ranges from 7% to 30%. The first two simulations deal with non ICR models and the two

following ones with ICR models. In the non ICR case, p12, p13 and p23 are chosen to be equal respectively

to 0.75, 0.25 and 1, while they are determined by the sojourn time distributions in the ICR case. The

transition probabilities and the survival functions are estimated from simulated samples of size n = 500,

with 500 replicates for each model, assuming an ICR model (assumption H0) or a general model. The

estimates of the transition probabilities are based on (17) and (18) for the general case and on (22) for

the ICR case. The estimates of the survival functions are based on (16) for the general case and on the

Kaplan-Meier estimator of section 3 for the ICR case.

insert here [table 1, 2 and 3]

Tables 2 and 3 give the median and the 95%-confidence intervals for the transition probabilities over the

500 replications. They show a serious gap between the simulated confidence intervals of the transition

probabilities obtained using the ICR and the general estimators under the alternative. The estimators

(17) and (18) always give the same numerical value. For the simulations under H0, both confidence

intervals are widely overlapping and the general estimator of the transition probabilities is always more

precise than the ICR estimator.

The confidence intervals of the survival functions in the non ICR models happened to be very close for

the estimates of F 12 in simulations 1 and 2 (Figures 2 and 4). A test for H0 based on their comparison

would lead to a wrong conclusion. A test for H0 based on a comparison of the estimated survival func-

tions would again be misleading in the ICR model 4 (Figures 8) for F 13. In the ICR models, the general

estimator of the survival functions F jj′ have always less bias and smaller confidence intervals than the

Kaplan-Meier estimator. This poor performance of the Kaplan-Meier estimator seems to be an effect of

the large number of censoring times in the competing risks models, the actual censoring times and the

sojourn times before a transitions to the other state j” �= j′. The estimator (20) has also be computed

for the ICR case, it presents a strong bias in all the simulated models, as an effect of the censorship in

each term of the product.

10



insert here [Figures 1 to 6]

The method has been applied to the heart transplant data (Kalbfleisch and Prentice, 1980) where

patients evolved in a three states model: waiting for a heart transplant (state 1), heart transplanted

(state 2) or dead (state 3). The total number of patients was n = 103 and all were in state 1 at t0.

The patients had 69 transitions from state 1 to state 2, 30 transitions from state 1 to state 3 and 45

transitions from state 2 to state 3, moreover 4 patients were censored in state 1 and 24 were censored

in state 2. The estimates of the transition probabilities (18) for the general case and on (22) for the

ICR case and their bootstrap confidence intervals were computed : p̂12 = 0.6699029, with confidence

interval (0.5825243, 0.7572816) and p̂RC
12 = 0.4468599, with confidence interval (0.3109207, 0.5773497),

p̂13 = 0.2912621, with confidence interval (0.2038835, 0.3786408) and p̂RC
12 = 0.5386473, with confidence

interval (0.4000553, 0.6703223), p̂13 = 0.8134351, with confidence interval (0.6716397, 0.9397728). The

hypothesis of ICR for the transitions from 1 was therefore rejected for both states 2 and 3.

insert here [figure 9]

11



Table 1. Parameters of the four simulations.

α12 λ12 α13 λ13 λcens1 λcens2

Simulation 1 (non ICR) and 3 (ICR) 1 0.5 1 4 0.2 0.2

Simulation 2 (non ICR) and 4 (ICR) 1.5 0.5 1.5 4 0.2 0.2

Table 2. Estimation of the transition probabilities.

(non ICR cases)

p12

Simulation True value ICR quantiles general quantiles

0.025 0.5 0.975 0.025 0.5 0.975

1 0.75 0.080 0.111 0.143 0.694 0.747 0.787

2 0.75 0.025 0.042 0.062 0.702 0.748 0.791

p13

Simulation True value ICR quantiles general quantiles

0.025 0.5 0.975 0.025 0.5 0.975

1 0.25 0.849 0.882 0.9123 0.207 0.249 0.294

2 0.25 0.932 0.953 0.973 0.209 0.250 0.295

Table 3. Estimation of the transition probabilities.

(ICR cases)

p12

Simulation True value ICR quantiles general quantiles

0.025 0.5 0.975 0.025 0.5 0.975

3 0.111 0.053 0.110 0.193 0.075 0.109 0.064

4 0.042 0.006 0.0400 0.096 0.019 0.041 0.145

p13

Simulation True value ICR quantiles general quantiles

0.025 0.5 0.975 0.025 0.5 0.975

3 0.889 0.802 0.887 0.944 0.856 0.889 0.922

4 0.958 0.902 0.958 0.992 0.936 0.958 0.978
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Figure 1: Histograms of transition probabilities estimations using general and ICR models. Simulation 1.
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Figure 2: Comparison of survival curves estimations using general and ICR estimators. Simulation 1.
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Figure 3: Comparison of survival curves estimations using general and ICR estimators. Simulation 2.
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Figure 4: Comparison of survival curves estimations using general and ICR estimators. Simulation 2.
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Figure 5: Histograms of transition probabilities estimations using general and ICR models. Simulation 3.
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Figure 6: Comparison of survival curves estimations using general and ICR estimators. Simulation 3.
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Figure 7: Histograms of transition probabilities estimations using general and ICR models. Simulation 4.
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Figure 8: Comparison of survival curves estimations using general and ICR estimators. Simulation 4.
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Figure 9: Estimates of transition functions for heart transplant data.
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