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Abstract

In this paper we propose a frailty model for statistical inference in the case where we are faced

with arbitrarily censored and truncated data. Our results extend those of Alioum and Commenges

(1996) who developed a method of fitting a proportional hazards model to data of this kind. We

discuss the identifiability of the regression coefficients involved in the model which are the parameters

of interest, as well as the identifiability of the baseline cumulative hazard function of the model which

plays the role of the infinite dimensional nuisance parameter. We illustrate our method with the use

of simulated data as well as with a set of real data on transfusion-related AIDS.

1 Introduction

A common feature of many failure time data in epidemiological studies is that they are simultaneously

truncated and interval-censored. For instance, right-truncated data occur in registers. An acquired

immune deficiency syndrome (AIDS) register only contains AIDS cases which have already been reported,

which generates right-truncated samples of induction times. As for the interval-censoring it comes usually

from grouped data or from the fact that patients are examined at certain dates and the event of interest

is only known to have occured between two specific checking times, one of which may be infinite in case

of right-censoring, when at the end of the study the event has not yet occured.

The most widely used model in survival analysis is the Cox proportional hazards model (Cox 1972).

Although the cases of right-censored and/or left-truncated data can be handled through the standard

method of estimation in the Cox model, namely, the partial likelihood, the cases for example of interval-

censored or right-truncated data should be treated differently. Turnbull (1976) and Frydman (1994) dealt

with the nonparametric estimation of the distribution function F when the data are interval-censored
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and truncated. Discrete time regression models for right-truncated data have been developed among

others by Gross and Huber-Carol (1992). Finkelstein (1986) fitted a proportional hazards model to

interval-censored data and Finkelstein et al. (1993) to right-truncated data, applying their results in

estimation and hypothesis testing on real data concerning AIDS patients. Huang (1994) and Huang and

Wellner (1995) examined the theoretical aspects related to the NPMLE of the regression coefficient and

the baseline distribution, in the case of the Cox model as well as in a class of semiparametric models, with

interval-censoring. Alioum and Commenges (1996) extended the existing results by fitting a proportional

hazards model to arbitrarily censored and truncated data and concentrated on hypothesis testing. Pan

and Chappell (2002) concentrated on the estimation of the parameters involved in the Cox model with

left-truncated and interval-censored data. They showed that the NPMLE can seriously underestimate

the baseline survival but it works well in estimating the regression coefficient. In this paper we introduce

frailty models for the case of arbitrarily censored and truncated data and focus on estimation of the

parameters of interest as well as the nuisance parameter of our model.

The need to apply frailty models to analyze survival data arises when the assumption of a homoge-

neous population seems questionable. In order to model unobserved heterogeneity in the population one

introduces a random effect into the model, called frailty, defined to act multiplicatively on the hazard

rate h(t|z) of an individual with covariate vector z. A frailty model therefore arises naturally from a

Cox model with unobserved covariates which materialize the frailty parameter. A frailty parameter is

also introduced to model dependence between survival times if the standard assumption of independence

seems unrealistic. The concept of frailty was introduced by Vaupel et al. (1979) who studied the model

with Gamma distributed frailties. There are many frailty distributions one could consider with the choice

of Gamma being the most popular due to its mathematical convenience. This particular model is well

known as the Clayton-Cuzick model (Clayton-Cuzick, 1985 and 1986). Vaupel and Yashin (1983) exam-

ined other frailty distributions such as the uniform, the Weibull and the log-normal distributions. Other

choices of frailty distributions include (see for example Hougaard 1984 and 1986) the Inverse Gaussian

and the Positive Stable distributions. Sahu and Dey (2003) developed a class of log-skew-t distributions

for the frailty parameter. This class includes the log-normal distribution along with many other heavy

tailed distributions such as the log-t and the log-Cauchy.

In section 2 we formulate the appropriate likelihood for the case of arbitrarily censored and truncated

data following the notation of Turnbull (1976) and Alioum and Commenges (1996). In section 3 we define

a general class of semiparametric frailty or transformation models that we will be using throughout the

paper and rewrite the likelihood for this class of models. We also reorganize the log-likelihood, as has

been done by previous authors, to produce a form that will be convenient for maximizaton with respect

to parameters. In section 4, we discuss the identifiability of β ∈ Rp, the parameter of interest, as well

as the identifiability of the baseline cumulative hazard function Λ, namely, the nuisance parameter. In

section 5 we illustrate the performance of our model with simulated data and a set of real data on
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transfusion-related AIDS. In section 6 we comment on our method and summarize all our important

conclusions.

2 Formulation

We present here the general framework of the case of arbitrarily censored and truncated data for indepen-

dent and identically distributed positive random variables following the formulation of Turnbull (1976),

Frydman (1994) and especially Alioum and Commenges (1996). Let X1,X2, . . . , Xn be independent and

identically distributed positive random variables with survival function S(x). For every random variable

Xi we have a pair of observations (Ai, Bi) where Ai is a set called the censoring set and Bi a set called

the truncating set. The random variable Xi belongs to the sample only if Xi falls into the set Bi. Also,

Xi is being censored by the set Ai in the sense that the only thing that we know about Xi is that it

belongs to the set Ai where Ai ⊆ Bi. The sets Ai belong to a partition Pi of [0,∞) and we assume that

Bi and Pi are independent of Xi and of the parameters of interest. We assume that the censoring sets

Ai, i = 1, . . . , n can be expressed as a finite union of disjoint closed intervals, that is,

Ai = ∪ki
j=1[Lij , Rij ]

where 0 ≤ Li1 ≤ Ri1 < Li2 ≤ Ri2 < . . . < Liki
≤ Riki

≤ ∞ for i = 1, . . . , n, Ri1 > 0, Liki
< ∞.

Moreover, we assume that the truncating sets Bi can be expressed as a finite union of open intervals

Bi = ∪ni
j=1(Lij ,Rij)

where 0 ≤ Li1 < Ri1 < Li2 < Ri2 < . . . < Lini
< Rini

≤ ∞ for i = 1, . . . , n.

The likelihood of the n pairs of observations (Ai, Bi), i = 1, 2, . . . , n is proportional to

l(S) =
n∏

i=1

li(S) =
n∏

i=1

PS(Ai)

PS(Bi)
=

n∏
i=1

∑ki

j=1

{
S(L−

ij) − S(R+
ij)

}
∑ni

j=1

{
S(L+

ij) − S(R−
ij)

} (1)

We are interested in defining a nonparametric maximum likelihood estimator (NPMLE)

of the survival function S, which decreases only in a finite number of disjoint intervals.

Let us define now the sets

L̃ = {Lij, 1 ≤ j ≤ ki, 1 ≤ i ≤ n} ∪ {Rij, 1 ≤ j ≤ ni, 1 ≤ i ≤ n} ∪ {0}

and

R̃ = {Rij, 1 ≤ j ≤ ki, 1 ≤ i ≤ n} ∪ {Lij, 1 ≤ j ≤ ni, 1 ≤ i ≤ n} ∪ {∞}.

Notice that the above likelihood is maximized when the values of S(x) are as large as

possible for x ∈ L̃ and as small as possible for x ∈ R̃. A set Q is defined uniquely as the
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union of disjoint closed intervals whose left endpoints lie in the set L̃ and right endpoints

in the set R̃ respectively, and which contain no other members of L̃ or R̃. Thus,

Q = ∪v
j=1[q

′
j, p

′
j]

where 0 = q′1 ≤ p′1 < q′2 ≤ p′2 < . . . < q′v ≤ p′v = ∞. Subsequently, we denote by C the

union of intervals [q′j, p
′
j] covered by at least one censoring set, W the union of intervals

[q′j, p
′
j] covered by at least one truncating set but not covered by any censoring set and

D = (∪Bi) the union of intervals [q′j, p
′
j] not covered by any truncating set. D is actually

included in the union of intervals [q′j, p
′
j]. That can be proved as follows. Let r be a

point not covered by any truncating set and neither being a left nor a right endpoint of

a truncating set. Then there exists l such that r ∈ [q′l, p
′
l] as

Ri1j1 = maxi,j{Rij : Lij < r} < r

Li2j2 = mini,j{Lij : Rij > r} > r

so that r ∈ [q′l, p
′
l] ≡ [Ri1j1 ,Li2j2 ].

Obviously, the set Q can be written as Q = C ∪ W ∪ D. The next two Lemmas

that appear in Turnbull (1976) and Alioum and Commenges (1996) are essential for the

maximization of (1) with respect to S and become apparent upon examination of (1).

Lemma 1 Any survival distribution function which decreases outside the set C∪D cannot be the NPMLE

of S.

A first comment is therefore that a NPMLE of S lies among the functions that are constant outside

the set C ∪D. Moreover notice that from the data we can only estimate the conditional survival function

SD(x) = P (X > x|X ∈ D) since we don’t have any information from the observed data about the

proportion of observations that belong to the set D. Due to these identifiability problems it was assumed

in Turnbull (1976) and Frydman (1994) that PS(D) = 0. We need not assume in the sequel that PS(D)

is equal to 0. The identifiability issues that arise from this assumption will be addressed later in Section

4. It is easy to see that SD and S give rise to the same likelihood. Therefore one should concentrate his

efforts into finding a NPMLE of SD when PS(D) is unknown. Let us denote the set C as

C = ∪m
i=1[qi, pi]

where q1 ≤ p1 < q2 ≤ p2 < . . . < qm ≤ pm. Let sj = SD(qj
−)−SD(pj

+). The likelihood given in (1) can

be written as a function of s1, s2, . . . , sm that is,

l(s1, . . . , sm) =
n∏

i=1

∑m
j=1 µijsj∑m
j=1 νijsj

(2)
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where µij = I[ [qj ,pj ]⊂Ai] and νij = I[ [qj ,pj ]⊂Bi], i = 1, . . . , n and j = 1, . . . , m. The NPMLE of SD is

actually not unique but there is a class of NPMLE’s of SD that share the same values s1, s2, . . . , sm as it

can be deduced by the following Lemma.

Lemma 2 For fixed values of SD(qj
−) and SD(pj

+), for 1 ≤ j ≤ m, the likelihood is independent of how

the decrease actually occurs in the interval [qj , pj ], so that SD is undefined within each interval [qj , pj ].

3 Nonproportional hazards models

The hazard rate of an individual with p-dimensional covariate vector z, for the proportional hazards

model, is given as

h(t|z) = eβT zh0(t)

where β ∈ Rp is the parameter of interest and h0(t) is the baseline hazard rate. When a positive random

variable η, called frailty, is introduced to act multiplicatively on the above hazard intensity function we

obtain

h(t|z, η) = ηeβT zh0(t)

and equivalently,

S(t|z, η) = e−ηeβT zΛ(t)

where Λ(t) is the baseline cumulative hazard function. Thus,

S(t|z) =
∫ ∞

0

e−xeβT zΛ(t)dFη(x) ≡ e−G(eβT zΛ(t)) (3)

where

G(y) = − ln(
∫ ∞

0

e−xydFη(x))

and Fη is the distribution function of the frailty parameter assumed in what follows to be completely

known. When G(x) = x, the above model reduces to the Cox model. A well known frailty model is the

Clayton-Cuzick model (Clayton and Cuzick 1985 and 1986) which corresponds to a Gamma distributed

frailty.

The class of semiparametric transformation models as was defined in Cheng et al. (1995) for right-

censored data, namely,

g(S(t|z)) = h(t) + βT z

is equivalent to our class of models (3) through the relations

g(x) ≡ log(G−1(− log(x)), h(t) ≡ log(Λ(t))
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where g is known and h unknown.

Let (X1, Z1), ..., (Xn, Zn) be i.i.d. random pairs of variables with marginal survival function defined

in (3) as in Vonta (1996) and Slud and Vonta (2003). The function G ∈ C3 is assumed to be a known

strictly increasing concave function with G(0) = 0 and G(∞) = ∞. As in the previous section we assume

that the random variables Xi are incomplete due to arbitrary censoring and truncation. The likelihood

(1) written for the frailty models defined in (3) takes the form

l(Λ, β|z) =
n∏

i=1

li(Λ, β|z) =
n∏

i=1

∑ki

j=1

{
e−G(eβT zΛ(Lij

−)) − e−G(eβT zΛ(Rij
+))

}
∑ni

j=1

{
e−G(eβT zΛ(Lij

+)) − e−G(eβT zΛ(Rij
−))

} · (4)

Our goal is to obtain the joint NPMLE’s of β, the parameter of interest and Λ, the nuisance parameter.

In the maximization of (4) with respect to Λ we employ Lemmas 1 and 2 that continue to hold under the

present generalization with some adjustments. In particular, we give here Lemma 3, the proof of which

retraces the steps of the corresponding Lemma 1 given in Turnbull (1976) and Alioum and Commenges

(1996), as well as Lemma 4.

Lemma 3 Any cumulative hazard-type function Λ within model (3) which increases outside the set C∪D

cannot be the NPMLE of Λ.

Proof.We will show first that any function Λ̃ which is not constant outside the set Q cannot be the

NPMLE of Λ. Define the points rj that belong to the interval (p′j , q
′
j+1), 1 ≤ j ≤ v − 1, where rj is some

value greater than all the right and less than all the left endpoints in [p′j , q
′
j+1]. Let the function Λ̃ have

jumps outside the set Q. There is at least one rk, 1 ≤ k ≤ v − 1 for which either (i) Λ̃(p′+k ) < Λ̃(rk) ≤
Λ̃(q′−k+1) or (ii) Λ̃(p′+k ) ≤ Λ̃(rk) < Λ̃(q′−k+1) . Let Λ∗ be constant outside the set Q and particularly

Λ∗(p′+k ) = Λ∗(q′−k+1) = Λ̃(rk) and Λ∗(x) = Λ̃(x) for all x �∈ [q′k, p′k+1]. Suppose that case (i) occurs. Then

Λ̃(p′+k ) < Λ∗(p′+k ) and consequently, since G is an increasing function e−G(eβT zΛ∗(p′+
k )) < e−G(eβT zΛ̃(p′+

k )).

Because of the way the set Q was constructed there is at least one observation i such that p′k = Ril for

1 ≤ l ≤ ki or p′k = Lil for 1 ≤ l ≤ ni. Let K be the set of these observations. Then we have either

e−G(eβT zΛ∗(R
+
il

)) < e−G(eβT zΛ̃(R
+
il

))

or

e−G(eβT zΛ∗(L+
il

)) < e−G(eβT zΛ̃(L+
il

)).

It follows that li(Λ∗, β|z) > li(Λ̃, β|z) for all i ∈ K. For i /∈ K we have that li(Λ∗, β|z) ≥ li(Λ̃, β|z).

It is easy to see now that l(Λ∗, β|z) > l(Λ̃, β|z), that is, the function Λ̃ cannot be the NPMLE of Λ in

likelihood (4). We obtain the same result in case (ii). This comment implies that for a Λ̂ to be a suitable

candidate for a NPMLE it has to be flat outside the set Q. Such a Λ̂ is also flat in W . Therefore, the

function Λ̂ that maximizes likelihood (4) puts mass only in the set C ∪ D and remains flat outside this

set. �.

6



Lemma 4 For fixed values of Λ(qj
−) and Λ(pj

+), for 1 ≤ j ≤ m, the likelihood is independent of how

the increase actually occurs in the interval [qj , pj ], so that Λ is undefined within each interval [qj , pj ].

We continue now to write the log-likelihood in the nonproportional hazards case in a more convenient

form so that the maximization with respect to Λ and β will be possible. Since the set C = ∪m
j=1[qj , pj ],

the set D can be written as D = ∪m
j=0Dj , where Dj = D ∩ (pj , qj+1), p0 = 0 and qm+1 = ∞. Notice that

Dj is either a closed interval or a union of disjoint closed intervals. Let δj = PΛ(Dj) denote the mass of

the cumulative hazard function Λ on the set Dj . From Lemma 3 we have that Λ(q−j ) = Λ(p+
j−1) + δj−1

for 1 ≤ j ≤ m + 1. The log-likelihood can then be expressed as

log l(Λ, β|z) =
n∑

i=1

{
log

( m∑
j=1

µij

(
e−G(eβT z(Λ(p+

j−1)+δj−1)) − e−G(eβT zΛ(pj
+))

)) −

log
( m∑

j=1

νij

(
e−G(eβT z(Λ(p+

j−1)+δj−1)) − e−G(eβT zΛ(pj
+))

))}
· (5)

In most real data problems, the set D consists of the union of two intervals, namely, D0 and Dm. If

there are only right-truncated data involved then the set D = Dm. If there are only left-truncated data

involved then the set D = D0. Therefore the case D = D0 ∪ Dm covers most of the problems one would

encounter in practice and therefore we will deal with this case from now on as far as the examples are

concerned. We will address the more general problem though from the point of view of the identifiability

in Section 4. In the above special case we have δ1 = δ2 = . . . = δm−1 = 0 and therefore likelihood

(5) involves the parameters β, δ0,Λ(p0), . . . ,Λ(pm). Since Λ(p0) = 0 we have to maximize likelihood (5)

with respect to the p + m + 1−dimensional parameter (β, δ0,Λ(p1), . . . ,Λ(pm)). Notice that δm could be

obtained directly from Λ(pm). Similarly to Finkelstein et al. (1993) and Alioum and Commenges (1996)

we will make the reparametrization γ0 = log(δ0) and γj = log(Λ(pj)) for j = 1, . . . , m for computational

convenience. Therefore the log-likelihood becomes

log l(Λ, β|z) =
n∑

i=1

{
log

( m∑
j=1

µij

(
e−G(eβT z+γj−1 ) − e−G(eβT z+γj )

)) −

log
( m∑

j=1

νij

(
e−G(eβT z+γj−1 ) − e−G(eβT z+γj )

))}
. (6)

A second reparametrization which ensures monotonicity of the sequence γj was subsequently employed,

that is, τ1 = γ1 and τj = log(γj − γj−1) for j = 2, . . . , m. This parametrization improved also the speed

of the convergence. The maximization in section 5 was actually done with respect to the parameters β

and γ0, τ1 . . . , τm with the use of software such as Splus and Fortran 77.

4 Identifiability

In our discussion of the identifiability of Λ and β we have to examine two cases, namely, the case β = 0

and the case β �= 0 and comment on each of them separately. For the case where there are no covariates,

7



that is, when β = 0, the cumulative hazard function Λ is not identifiable. In order to show this we will

concentrate on the case where D = D0∪Dm which is general enough as we argued in the previous section.

Let us define the family of cumulative hazard functions indexed by two positive constants c1 and c2 as

follows

�(t, c1, c2) = G−1(c1 + min(Λ(t), c2))

for t ∈ D. This class of cumulative hazard functions gives rise to the same likelihood as Λ for any value

of the constant c1 and for the constant c2 taken large enough. For an individual i, in the simple case

where ki = ni = 1, the ith term of the likelihood for the family � of cumulative hazard functions and for

β = 0 is given as

li(�, 0|z) =
e−G(G−1(c1+min(Λ(Li

−),c2)) − e−G(G−1(c1+min(Λ(Ri
+),c2))

e−G(G−1(c1+min(Λ(Li
+),c2)) − e−G(G−1(c1+min(Λ(Ri

−),c2))

=
e−min(Λ(Li

−),c2) − e−min(Λ(Ri
+),c2)

e−min(Λ(Li
+),c2) − e−min(Λ(Ri

−),c2)

which is equal to li(Λ, 0|z) for any c1 and c2 chosen larger than the largest right endpoint pm in C.

For the case β �= 0 the identifiability argument depends heavily on our assumption of a frailty model.

Let us concentrate first in the case where the set D = D0 ∪ Dm where D0 = [0, d0] and Dm = [dm,∞).

We will prove that when we have at least two covariates then we can identify the parameter β along with

the parameters (δ0,Λ(p1), . . . ,Λ(pm), δm). In particular, in order to show the identifiability of β and Λ

we show that they are both functions of quantities that are known to be identifiable. For convenience let

us assume that the two covariates z1 and z2 are binary, giving rise to four combinations of observations.

Following the construction of the set Q presented in Section 2 for each of the four combinations separately

we produce four sets of the type C∪D. We denote by C00∪D00 the set that corresponds to the observations

with z1 = z2 = 0, by C10 ∪ D10 the observations with z1 = 1 and z2 = 0 and similarly for the other

two groups. Then D00 = D00
0 ∪ D00

m and moreover, D00
0 = [0, d00

0 ] and D00
m = [d00

m ,∞) while similar

notations hold for the other three groups. Let u�
0 = max{d00

0 , d10
0 , d01

0 , d11
0 }, u�

m = min{d00
m , d10

m , d01
m , d11

m}
and U = [u�

0, u
�
m]. Let also C� = C00 ∩ C10 ∩ C01 ∩ C11 = ∪m′

i=1[q
�
i , p�

i ].

The quantities

SU (p�
j |z) =

S(p�
j |z) − S(u�

m|z)
S(u�

0|z) − S(u�
m|z)

(7)

for (z1, z2) equal to (0,0) or (0,1) or (1,0) or (1,1) and for j = 1, . . . ,m′ are identifiable (Lagakos et al.

(1988), Finkelstein et al. (1993)). We assume here that the mass in the interval [q�
j , p�

j ] is concentrated at

the point p�
j since we have no way of knowing how exactly is that mass distributed in that interval. Another

identifiable quantity that is available is the ratio of the hazard functions hU (x|z) = (− log SU (x|z))′ for

two different values of z, taken at x = p�
j . This quantity is equal to

HU (x|zl, zk) =
hU (x|z = zl)
hU (x|z = zk)
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=
e−G(eβT zk Λ(x)) − e−G(eβT zk Λ(u�

m))

e−G(eβT zlΛ(x)) − e−G(eβT zlΛ(u�
m))

e−G(eβT zlΛ(x))+G(eβT zk Λ(x))eβ G′(eβT zlΛ(x))
G′(eβT zkΛ(x))

· (8)

So, from (7), Λ(p�
j ) can be obtained as a function f of Λ(u�

0), Λ(u�
m) and the identifiable quantity

SU (p�
j |0, 0). Then, Λ(u�

m) can be obtained as function f ′
1 of β, Λ(u�

0), the function f and the identifiable

quantity SU (p�
j |0, 1). In other words, Λ(u�

m) can be obtained as a function f1 of β, Λ(u�
0), SU (p�

j |0, 0) and

SU (p�
j |0, 1). Then similarly, Λ(u�

0) can be obtained as a function f2 of β and the quantities SU (p�
j |0, 0),

SU (p�
j |0, 1) and SU (p�

j |1, 0). Consequently, β1 the first component of the vector β, can be obtained as

a function f3 of the quantities SU (p�
j |0, 0), SU (p�

j |0, 1), SU (p�
j |1, 0) and SU (p�

j |1, 1) and β2, the second

component of the vector β. Finally, β2 is identifiable since it can be obtained as a function f4 of the

identifiable quantities SU (p�
j |0, 0), SU (p�

j |0, 1), SU (p�
j |1, 0), SU (p�

j |1, 1) and HU (p�
j |zl, zk) for some choice

of values zl and zk. Having identified β2 we follow this argument backwards to obtain identifiability of

β1 and Λ(p�
j ) for j = 1, . . . ,m′.

We need to show now identifiability at all the points pj , j = 1, . . . ,m, d0, and dm. We show identi-

fiability at dm and similar discussions for the other points will complete the argument. Note that there

exists a value zl of z for which dzl
m = dm. Then the quantity

S(u�
m|z = zl) − S(dm|z = zl)

S(u�
0|z = zl) − S(dm|z = zl)

is identifiable. Therefore, Λ(dm) is identifiable as a function of the preceding identifiable quantity and

the identifiable quantities β, Λ(u�
0) and Λ(u�

m).

It is easy to see that in the above situation, we can have identifiability even when only one covariate,

with takes at least three different values, is present. On the other hand, if we have only one covariate

which takes two values then we could not identify the mass on D0 and Dm separately. We could however

identify the global mass on D acting as though all the mass is concentrated on D0, which is the case of

left-truncated data, or on Dm which is the case of right-truncated data.

In more general truncating schemes where D = ∪m
j=0Dj we can obtain identifiability of all the quan-

tities involved, by looking at windows in time that follow the pattern that we have already examined,

namely, a set D followed by a set C and then followed by a set D. We could for example start at the

last window in time that follows this pattern and the window next to the last. Let us denote the time

interval corresponding to the last window, Um and to the window next to the last, Um−1. Conditionally

on the fact that we are in Um, we follow the argument described above to identify β, δm−1, δm and

Λ(pj) for those pj that fall between the sets Dm−1 and Dm. Similarly, conditionally on the fact that we

are in Um−1, we can identify the quantities β, δm−2, δm−1 and Λ(pj) for those pj that fall between the

sets Dm−2 and Dm−1. Since we have identified the mass at Dm−1 conditionally belonging to Um and

conditionally belonging to Um−1, we can easily find its ‘real’ mass when it belongs to Um−1 ∪Um. Using

this value we can adjust for all the quantities involved in the new time interval Um−1 ∪Um. We continue

in the same way, namely, looking at the window Um−2 and the time interval Um−1 ∪ Um, which share

mass at Dm−2, retracing the same steps until we identify all the quantities involved in the time interval

9



Um−2 ∪ Um−1 ∪ Um. The procedure continues until all the windows down to the last one denoted by U1

have been covered.

4.1 Real data

In this section our model is illustrated with a previously analyzed data set (Kalbfleisch and Lawless

(1989), Lagakos et al. (1988) and Alioum and Commenges (1996)) on tranfusion related AIDS. The

data set consists of 494 cases, of which only 295 are consistent in the sense that their infection could be

attributed to a single transfusion or to a short series of transfusions. Our analysis is based on those 295

cases diagnosed by June 30, 1986 and reported to the Centers for Disease Control in Atlanta, Georgia

prior to January 1, 1987. For each individual the time of infection xi (in months), the induction period

ti (also in months), and the age+1 years at the time of transfusion are reported. The earliest infection

was reported in January 1978 and labeled as month 1 so that the maximum observable induction time

is x∗ equal to 102 months. The data are right-truncated because an individual i is only included in the

sample if xi + ti ≤ x∗. We consider three groups of individuals according to their age, namely children,

adults and elderly (with corresponding age intervals [0,12], (12,60) and [60,80]) and create a covariate

with levels 0, 1 and 2. This partition appears in Kalbfleisch and Lawless (1989). As was shown in Section

4, the presence of this covariate allows our model to be identifiable. In our analysis we keep the month

as the unit of time (as in Alioum and Commenges (1996)). Specifically, xi is shifted to xi − 0.5 (as in

Kalbfleisch and Lawless (1989) for their continuous analyses of the data) and ti is shifted to ti + 0.5 and

assumed to lie in a censoring interval equal to [ti, ti + 1).

Two frailty models of the class defined in (3) are considered, namely, the Inverse Gaussian and the

Clayton-Cuzick. For the first model, η is taken to be distributed as Inverse Gaussian with mean 1 and

variance 1/2b. For the Clayton-Cuzick model, η is taken to be distributed as Gamma with mean 1 and

variance c. When one chooses a value for the parameter b or c, one actually specifies the variance of the

frailty. The function G takes respectively the form

G(x, b) =
√

4b(b + x) − 2b, b > 0

and

G(x, c) =
1
c

ln(1 + cx), c > 0.

In Table 1 we present the estimator of β and ̂PΛ(D), that is, the estimated probability of being truncated,

as obtained by the maximization of our likelihood with respect to β and Λ, along with the log-likelihood

value at (β̂, Λ̂) for different values of the parameter b of the Inverse Gaussian model. In Table 2 the

corresponding quantities for the Clayton-Cuzick model and for different values of the parameter c are

presented. In both cases we maximized over a total of 72 parameters, as the value of m, defined in Section

2, was found to be equal to 71.

HERE : Table 1. Inverse Gaussian Model.
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HERE : Table 2. Clayton-Cuzick Model.

Notice that for the Inverse Gaussian model the maximum of the log-likelihood with respect to the

parameter b occurs at b = 0.039 providing a β̂ = −4.69 and ̂PΛ(D) = 0.82. On the other hand, for

the Clayton-Cuzick model the log-likelihood values continue to increase as c tends to ∞. However they

remain quite stable after c = 10, for which β̂ = −3.62 and ̂PΛ(D) = 0.88.

Figures 1, 2 and 3 present the fit of the Inverse Gaussian model at b̂ = 0.039 to the Aids data for

the three age groups separately. Each figure provides the estimated survival function through the Inverse

Gaussian frailty model as well as the corresponding nonparametric maximum likelihood estimator of the

survival function (as in Turnbull (1976)). Figures 4, 5 and 6 present similarly the fit of the Clayton-

Cuzick model with c = 10 to the Aids data for the same three age groups. The nonparametric maximum

likelihood estimator of the survival function for each group, presented in the figures, was found as the

maximizer of the likelihood defined in (2) with respect to the vector (s1, . . . , sm), where the value of m is

of course different for each group. The maximization was done subject to the constraints
∑

sj = 1 and

sj ≥ 0 for 1 ≤ j ≤ m. Note that the self-consistency algorithm proposed by Turnbull (1976) was used in

the process. Recall that the survival function S is not identifiable unless PS(D) is known and this is due

to the fact that the likelihood (2) does not depend on PS(D), the probability of belonging to the set D.

Therefore in order to be able to compare our results with the NPMLE’s we have matched PS(D) with

the probability ̂PΛ(D) obtained through the maximization of our log-likelihood (3).

Observe that the best fit to the Aids data is obtained through the Inverse Gaussian model, which

becomes evident (Figure 7) from the first age group, namely, the children less than 12 years of age.

Since the fit of the Inverse Gaussian frailty model is substantially better as opposed to the fit due to

the proportional hazards model we can safely deduce that a random effect is essential to be included in

the hazard rate in order to describe the heterogeneity present in the transfusion related Aids data. This

conclusion is greatly supported also by the fact that the log-likelihood in the case of the Inverse Gaussian

model is maximized at b = 0.039 implying a big variance for the frailty parameter equal to 12.82. At

the same time, in the Clayton-Cuzick model, the log-likelihood values increase as the parameter c, which

is actually the variance of the frailty parameter, tends to ∞, although not by much after c equal to 10.

Observe also that the fit of the Inverse Gaussian model with frailty variance equal to 12.82 is better

than the fit of the Clayton-Cuzick model with about the same variance as it can be seen mainly when

comparing Figures 1 and 4 that correspond to the children’s group.

HERE: FIGURES 1 to 7

11



4.2 Simulated data

We performed four simulations with 100 replications each. For each sample 400 times xi and 400 survival

times ti were generated. Given a time x∗ the times xi were generated from a U(0, x∗) distribution while

the survival times ti were generated from a frailty model of the class defined in (3) with Weibull baseline

hazard function. More specifically, we considered a Weibull distribution with scale parameter ρ0 equal

to 2 and shape parameter κ equal to 0.7, where the baseline cumulative hazard function is of the form

Λ(t) = (t/ρ0)κ. Two binary covariates Z1 and Z2 for which P (Zi = 0) = P (Zi = 1) = 1/2 for i = 1, 2 were

considered. From the data that were generated only the data that satisfied the condition xi+ti ≤ x∗ were

kept in the sample giving rise to right-truncated data. The interval [0, x∗] was divided into n =15 equal

intervals that constitute a partition [ak−1, ak) for k = 1, . . . , n where a0 = 0 and an = x+
∗ . The survival

times ti are not only truncated but also interval-censored as they are reported only to belong in one of

those intervals of the partition. In fact, they are reported to belong to intervals of the form [ak−1, x∗−xi)

whenever happens that x∗ − xi < ak. Two of the simulations were generated from the Clayton-Cuzick

model with parameter c equal to 2 and 0.5 respectively and two from the Inverse Gaussian model with

parameter b equal to 0.5 and 1 respectively. The true probability of belonging to the set D, PΛ(D) was

taken to be 0.19 (as was used for example in Finkelstein et al. (1993)) for all simulations. Because of

truncation, the sample size of the generated samples is random and so is the number of parameters to

be estimated. The sample size was about 300 and the number of parameters to be estimated for each

sample about 30. Also, the point x∗ varied according to the true values of β1, β2 and PΛ(D).

In the next tables we provide the mean of the estimators β̂1, β̂2 and ̂PΛ(D) as well as their sample

variances for different true values of β1, β2 and b or c involved in the frailty distribution. ̂PΛ(D) was

obtained from the overall population in each sample, as a weighted average of the survival curves of the

four groups at the point pm.

HERE : Tables 1 to 4

In our simulations we were faced with the situation of the likelihood having a saddle point and therefore

our procedure of maximization diverged. This small proportion of samples was left out as we did not

use a sophisticated enough method of maximization as other authors (Alioum and Commenges (1996),

Pan and Chappell (2002)). We found that the estimator of the regression coefficient which is bigger in

absolute value, tends to slightly overestimate its true absolute value resulting also in higher variance than

the estimator of the other coefficient which in general behaves well. Therefore the median will be a more

robust estimator in this case. More specifically, the median of β1 is 2.109 for Table 1, 2.193 for Table 2,

2.087 for Table 3 and -2.127 for Table 4. The median of β2 is -1.235 for Table 1, -1.289 for Table 2, -1.244

for Table 3 and -1.069 for Table 4. The mean of ̂PΛ(D) seems to be a very good estimator of PΛ(D)

in all situations. There is a tendency however for both frailty models to underestimate PΛ(D) as the
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baseline survival function appears to be underestimated as well, although more work is needed to draw

safely such a conclusion.

5 Discussion

In this paper we are dealing with the most general scheme of truncated and censored data in survival

analysis, as in Alioum and Commenges (1996). In their paper, Alioum and Commenges are considering

a Cox model, while, under the same pattern of data, we are dealing with a generalization of this model

in order to take into account a possible heterogeneity among the population. Using a likelihood, along

the lines of Turnbull (1976), Finkelstein et al. (1993), Alioum and Commenges (1996), Pan and Chappell

(2002), we obtain nonparametric estimates for the underlying baseline cumulative hazard, the coefficients

of the underlying Cox regression, and the probability of truncation.

The set of real data on AIDS acquired by transfusion, previously analyzed by many authors, was for

the first time analyzed under the framework of the frailty models. It was a very interesting finding that

heterogeneity is in fact present in the AIDS data and as we argued in the previous section, it was very well

described by the Inverse Gaussian distribution. On the other hand, we feel that the Gamma frailty model

is not appropriate for this set of data for many reasons. One reason is that the relative heterogeneity

among the patients seems to reduce as time passes by, instead of remaining constant as is the case for

the Gamma frailty (Hougaard (1984)). It is generally known that the Gamma model, although popular,

has many drawbacks one of which as Sahu and Dey (2003) point out, is that it weakens the effect of

the covariates. This is exactly what we came to realize through our work with the Gamma model. This

feature becomes apparent when one takes a closer look not only at the truncation set overall estimated

probability but also at the same estimated probability for each group (see Figures 1 through 6). Notice

also that the maximization of the likelihood with respect to the parameter c tending to ∞, implies an

estimated probability of truncation tending to 1 which is unrealistic.

Our estimated right-truncation probability under the Inverse Gaussian model, that is, ̂PΛ(D) = 0.82

seems also to be rather high. But in view of the values for PΛ(D) that were assumed ”a priori” by former

authors, (see for instance Alioum and Commenges who thought it very plausible that it would be equal to

0.60), and also taking into account the relatively good estimation of PΛ(D) we obtain in the simulations,

we think that this is a reliable value for PΛ(D). Another reason for comforting us in our opinion that

the Inverse Gaussian model provides a good fit to the AIDS data, is the good fit we obtain in each group

for the survival obtained by our model as compared to the respective Turnbull conditional NPMLE of

the survival. Finally, the frailty models considered in this paper, are part of a more general class of

transformation models (see Bagdonavicius and Nikulin (2002)), so that our method could be generalized

to this class of models under regularity conditions on the transformation function G.

13



REFERENCES

Alioum, A. and Commenges, D. (1996). A proportional hazards model for arbitrarily censored and truncated

data. Biometrics 52, 512-524.

Bagdonavicius, V. and Nikulin, M. (2002). Accelerated Life Models, Chapman and Hall/CRC, Boca Raton.

Cheng, S. C., Wei, L. J. and Ying, Z. (1995). Analysis of transformation models with censored data. Biometrika

82, 835-845.

Clayton, D. and Cuzick, J. (1985). Multivariate generalizations of the proportional hazards model (with

discussion). J. Roy. Statist. Soc. A 148, 82-117.

Clayton, D. and Cuzick, J. (1986). The semiparametric Pareto model for regression analysis of survival times.

Papers on Semiparametric Models MS-R8614, 19-31. Centrum voor Wiskunde en Informatica, Amsterdam.

Cox, D. R. (1972). Regression models and life tables (with discussion). Journal of the Royal Statistical Society,

Series B 34, 187-220.

Finkelstein, D. M. (1986). A proportional hazards model for interval-censored failure time data. Biomet-

rics42, 845-854.

Finkelstein, D. M., Moore, D. F., and Schoenfeld , D. A. (1993). A proportional hazards model for truncated

AIDS data. Biometrics 49, 731-740.

Frydman, H. (1994). A note on nonparametric estimation of the distribution function from interval-censored

and truncated observations. Journal of the Royal Statistical Society, Series B 56, 71-74.

Gross, S. T. and Huber-Carol, C. (1992). Regression models for truncated survival data. Scandinavian Journal

of Statistics 19, 193-213.

Hougaard, P. (1984). Life table methods for heterogeneous populations: Distributions describing the het-

erogeneity. Biometrika 71, 75-83.

Hougaard, P. (1986). Survival models for heterogeneous populations derived from stable distributions.

Biometrika 73, 387-396.

Huang, J. (1994). Efficient estimation for the Cox model with interval censoring. Technical Report, Depart-

ment of Statistics, University of Washington.

Huang, J. and Wellner, J. A. (1995). Efficient estimation for the proportional model with ”case 2” interval

censoring. Technical Report, Department of Statistics, University of Washington.

14



Kalbfleisch, J. D. and Lawless, J. F. (1989). Inference based on retrospective ascertainment: An analysis of

data on transfusion-associated AIDS. Journal of the American Statistical Association 84, 360-372.

Lagakos, S. W., Barraj, L. M. and De Gruttola, V. (1988). Nonparametric analysis of truncated survival

data, with application to AIDS. Biometrika 75, 515-523.

Pan, W. and Chappell, R. (2002). Estimation in the Cox proportional hazards model with left-truncated and

interval-censored data. Biometrics 58, 64-70.

Sahu, S. K. and Dey, D. K. (2003). On multivariate survival models with a skewed frailty and a correlated

baseline hazard process. http://www.maths.soton.ac.uk/staff/Sahu/research/papers/logskew.html.

Slud, E. V., and Vonta, F. (2003). Consistency of the NPML estimator in the right-censored transformation

model. Scandinavian Journal of Statistics (to appear).

Turnbull, B.W. (1976). The empirical distribution function with arbitrarily grouped, censored and trun-

cated data. Journal of the Royal Statistical Society, Series B 38, 290-295.

Vaupel, J. W., Manton, K. G. and Stallard, E. (1979). The impact of heterogeneity in individual frailty on

the dynamics of mortality. Demography 16, 439-454.

Vaupel, J. W. and Yashin, A. I. (1983). The deviant dynamics of death in heterogeneous populations. RR-83-1

Laxenburg, Austria: International Institute for Applied Systems Analysis.

Vonta, F. (1996). Efficient estimation in a non-proportional hazards model in survival analysis. Scandinavian

Journal of Statistics 23, 49-61.

Tables for section on Real data:

Table1 - Inverse Gaussian Model

b β̂ ̂PΛ(D) LogLik

0.005 -5.961 0.939 -992.8312

0.01 -5.793 0.902 -992.6381

0.02 -5.302 0.864 -992.4520

0.038 -4.715 0.823 -992.3735

0.039 -4.690 0.821 -992.3734

0.04 -4.466 0.819 -992.3736

0.05 -4.454 0.802 -992.3884

0.1 -3.812 0.735 -992.6017

0.5 -2.723 0.553 -994.0544

3.0 -2.257 0.486 -995.7565
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Table 2 - Clayton-Cuzick Model

c β̂ ̂PΛ(D) LogLik

0.5 -2.515 0.498 -994.571

0.7 -2.627 0.518 -994.156

1.0 -2.768 0.553 -993.728

3.0 -3.258 0.718 -992.770

8.0 -3.576 0.856 -992.417

10.0 -3.623 0.880 -992.377

20.0 -3.725 0.934 -992.300

25.0 -3.747 0.946 -992.286

30.0 -3.762 0.954 -992.276

1000.0 -3.836 0.998 -992.232
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Tables for section on simulated data

Table 1 - Clayton-Cuzick Model

β1 = 2, β2 = −1, c = 0.5 Mean Sample V ariance

β̂1 2.237 0.659

β̂2 -1.239 0.100

̂PΛ(D) 0.200 0.027

Table 2 - Clayton-Cuzick Model

β1 = 2, β2 = −1, c = 2.0 Mean Sample V ariance

β̂1 2.331 0.726

β̂2 -1.368 0.521

̂PΛ(D) 0.211 0.060

Table 3 - Inverse Gaussian Model

β1 = 2, β2 = −1, b = 1.0 Mean Sample V ariance

β̂1 2.269 0.617

β̂2 -1.270 0.101

̂PΛ(D) 0.204 0.029

Table 4 - Inverse Gaussian Model

β1 = −2, β2 = −1, b = 0.5 Mean Sample V ariance

β̂1 -2.205 0.603

β̂2 -1.097 0.189

̂PΛ(D) 0.175 0.031
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 Frailty parameter b=0.039, Frailty Variance = 12.82.
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Figure 1: Comparison of survival curves estimates for children (group Z = 0).

 Frailty parameter b=0.039, Frailty Variance = 12.82.
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Figure 2: Comparison of survival curves estimates for adults (group Z = 1).
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 Frailty parameter b=0.039, Frailty Variance = 12.82.
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Figure 3: Comparison of survival curves estimates for elderly (group Z = 2).

 Frailty parameter c = 10 = Frailty Variance.
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Figure 4: Comparison of survival curves estimates for children (group Z = 0).
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 Frailty parameter c=10= Frailty Variance.
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Figure 5: Comparison of survival curves estimates for adults (group Z = 1).

 Frailty parameter c=10 = Frailty Variance.
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Figure 6: Comparison of survival curves estimates for elderly (group Z = 2).
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Figure 7: Comparison of survival curves estimates for children (group Z = 0, frailty b=0.039).
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