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Abstract: We define a new class of models for multivariate survival data,
in continuous time, based on a number of cumulative hazard functions, along
the lines of our family of models for correlated survival data in discrete time
(Gross and Huber, 2000, 2002). This family is an alternative to frailty and
copula models. We establish some properties of our family and compare it
to Clayton’s and Marshall-Olkin’s. Finally we derive non parametric partial
likelihood estimates of the hazards involved in its definition and prove, using
martingale theory, their asymptotic normality. Simulations will be performed
as well as applications to diabetic retinopathy and tumorigenesis in rats.
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1.1 Introduction

Much attention has been paid to multivariate survival models and inference
since the early work of Hougaard, and his recent book (2004) on the subject.
Studies on twins lead to the development of papers on bivariate distributions,
and, more generally the analysis of family data or clusters data lead to more gen-
eral models for correlated survival data. One way of dealing with this problem
is to use copula or frailty models (see for example Bagdonavicius and Nikulin
(2002) for a review of those models). Among the most usual bivariate models,
one finds Clayton’s, Marshall-Olkin’s and Gumbel’s models. We shall present
here a model for continuous multivariate data based on the same idea as the
one we used in the discrete case (Gross and Huber, (2002)), and which is closely
related to a multi-state process. We define our class of models in detail for the
special case of bivariate data, and generalize this class to any dimension. We
then obtain properties of these models and compare them to the usual ones
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cited above. We then derive NPML estimators for the involved functions and
derive their asymptotic properties.

1.2 Definition of the models

1.2.1 Bivariate continuous model

Let L be the class of continuous univariate cumulative hazard functions on IR+:

L = {Λ : IR+ → IR+, continuous, non decreasing ,Λ(0) = 0,Λ(t) −−−→
t→∞

∞}

Definition 1 (bivariate continuous model)
Given any five members Λ01

11,Λ
10
11, Λ00

11,Λ
00
01,Λ

00
10 of L, we define a joint bivariate

survival function S on IR+ × IR+ by

for x < y , dS(x, y) = exp{−Λ01
11(x) − Λ10

11(x) − Λ00
11(x)}dΛ01

11(x)

exp{−(Λ00
01(y) − Λ00

01(x)}dΛ00
01(y)

for y < x , dS(x, y) = exp{−Λ01
11(y) − Λ10

11(y) − Λ00
11(y)}dΛ10

11(y) (1.1)

exp{−(Λ00
10(x) − Λ00

10(y)}dΛ00
10(x)

for y = x , dS(x, y) = exp{−Λ01
11(x) − Λ10

11(x) − Λ00
11(x)}dΛ00

11(x)

We propose the family (1.1) of bivariate probabilities as an alternative to the
bivariate probabilities defined by frailties or copulas. It is easy to verify that S
thus defined is actually a bivariate survival function, and that a necessary and
sufficient condition for the corresponding probability to be absolutely contin-
uous (AC) with respect to λ2, the Lebesgue measure on IR2, is that Λ00

11 ≡ 0.
Otherwise, part of the mass is on the diagonal of IR2.

1.2.2 Generalization to p components

When more than two components are involved, say p, then our hierarchical class
of models is defined in a similar way, involving now a number of cumulative
hazards K(p) equal to

K(p) =

p−1∑

k=0

Cp−k
p C1

p−k. (1.2)

when the multivariate law is absolutely continuous with respect to λp, the
Lebesgue measure on IRp, and

K(p) =

p−1∑

k=0

Cp−k
p (2p−k − 1). (1.3)

when simultaneous jumps are allowed.
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1.2.3 Properties of the bivariate family

Theorem 1 For all bivariate survival functions defined above and such that
Λ00

11 ≡ 0, we have the following conditional hazard rates ∀s < t ∈ IR+:

P (X = dt, Y > t|X ≥ t, Y ≥ t) = dΛ01
11(t)

P (X > t, Y = dt|X ≥ t, Y ≥ t) = dΛ10
11(t)

P (X = dt|X ≥ t, Y < t) = dΛ00
10(t) = P (X = dt|X ≥ t, Y = ds)

P (Y = dt|Y ≥ t,X < t) = dΛ00
01(t) = P (Y = dt|Y ≥ t,X = ds)

Conversely, if there exist Λ10
11,Λ

01
11,Λ

00
10,Λ

00
01, cumulative hazard functions in L

such that the joint law satisfies the above equations, then the joint survival
function of (X,Y ) satisfies (1.1).

Theorem 2 If (X,Y ) has survival function S given by (1.1), then X and Y
are independent and S is absolutely continuous with respect to λ2 if and only if

Λ00
11 ≡ 0 ; Λ01

11 ≡ Λ00
10 ; Λ10

11 ≡ Λ00
01.

1.2.4 General bivariate model

A version of our model (1.1), in discrete time, was introduced in Gross and
Huber (2000). The two models are embedded in the following general model.
Let L∗ be the set of cumulative hazards with possible jumps on an at most
denumerable set of points D ∈ IR+:

L∗ = {Λ : IR+ → IR+,Λ non decreasing ,Λ(0) = 0,Λ(t) −−−→
t→∞

∞}

Definition 2 (general bivariate model)
Given any five members Λ01

11,Λ
10
11,Λ

00
11,Λ

00
01,Λ

00
10 of L∗ and D = {x1, x2, . . . , xm, . . . }

the ordered set of discontinuity points of the Λ′s we define a joint bivariate sur-
vival function S on IR+ × IR+ by

For x < y

dS(x, y) =
∏

t<x

(1 − Λ01
11(dt) − Λ10

11(dt) − Λ00
11(dt)) Λ01

11(dx)

∏

x≤t<y

(1 − Λ00
01(dt))Λ00

01(dy)

and for x > y

dS(x, y) =
∏

t<y

(1 − Λ01
11(dt) − Λ10

11(dt) − Λ00
11(dt)) Λ10

11(dy)

∏

y≤t<x

(1 − Λ00
10(dt))Λ00

10(dx) (1.4)

Finally for y=x

dS(x, x) =
∏

t<x

(1 − Λ01
11(dt) − Λ10

11(dt) − Λ00
11(dt)) ∆Λ00

11(x)
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If D = ∅, then (1.4) simplifies to (1.1).

1.2.5 Purely discrete model:

Definition 3 (purely discrete model)
Let λ(u) = Λ(u+) − Λ(u−), for all five Λ′s involved in the definition (1.4),
assumed to be purely discontinuous, with jumps in D = {xk, k ∈ IN}. Then
define

For xi < xj , P (X = xi, Y = xj) =
∏

k<i(1 − λ01
11(xk) − λ10

11(xk) − λ00
11(xk))λ

01
11(xi)∏

i<k<j(1 − λ00
01(xk))λ

00
01(xj)

For xi > xj, P (X = xi, Y = xj) =
∏

k<j(1 − λ01
11(xk) − λ10

11(xk) − λ00
11(xk))λ

10
11(xj)∏

j<k<i(1 − λ00
10(xk))λ

00
10(xi)

For xi = xj, P (X = xi, Y = xi) =
∏

k<i(1 − λ01
11(xk) − λ10

11(xk) − λ00
11(xk))λ

00
11(xi)

1.2.6 Simple examples of laws of type (1.1)

Let a, b, c, d be four strictly positive constants and dΛ01
11(t) = a, dΛ10

11(t) = b,
dΛ00

10(t) = c, dΛ00
01(t) = d. Then, denoting S the bivariate survival, we have:

d2S(x,y)
dxdy = e−(a+b)xae−d(y−x)d if x < y

= e−(a+b)ybe−c(x−y)c if x > y

Although all four hazard rates are constant, the marginals of these distributions
are not exponential. Other simple examples arise from replacing the above
exponential hazards by other families, like for example, Weibull or Pareto.

1.3 Some usual bivariate models

Among the most usual bivariate models, one finds Clayton’s, Marschall-Olkin’s
and Gumbel’s models.

1.3.1 Clayton bivariate distribution

Clayton survival function (1978), parametrized by Oakes (1989) is given by:

S(x, y) = P (X1 > x,X2 > y) = [S1(x)−(θ−1) + S2(y)−(θ−1) − 1]
−1

θ−1 (1.5)

where θ ∈]1+∞[ and S1(x) and S2(y) are the marginal survival functions for X1

and X2. The limiting distribution, when θ → 0 has independent components.
We change parameter, letting

a = 1
θ−1

θ > 1 ; a > 0.
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Genest et al propose a pseudo likelihood (PL) estimate for a. Their PL is
based on a copula defining the joint distribution function F (x, y) = cα(F1(x), F2(y)).
It is the product, for all observations (xi, yi), of the second partial derivative
of cα(u, v) with respect to u and v. u and v are further respectively replaced

by F̂1(x) and F̂2(y). With our copula acting on the survival rather than on the
d.f., the corresponding PL is derived below. If

Sa(u, v) = [u−1/a + v−1/a − 1]−a,

the pseudo-likelihood is equal to

n∏

i=1

[
∂2Sa(u, v)

∂u∂v
]
u=cS1(xi),v=cS2(yi)

As
∂2Sa(u, v)

∂u∂v
= (1 +

1

a
)

1

uv
e−

1

a
log(uv)[u− 1

a + v−
1

a − 1]−a−2

one can compute easily the PL substituting the Kaplan-Meier estimates Ŝ1 and
Ŝ2 for S1 and S2.

1.3.2 Marshall-Olkin bivariate distribution:

Let λ1, λ2 and λ12 be three positive constants and S the bivariate survival
function

S(x1, x2) = P (X1 ≥ x1, X2 ≥ x2) = e−λ1x1−λ2x2−λ12(x1∨x2) (1.6)

It is clear that the bivariate Marshall-Olkin is not absolutely continuous
with respect to λ2 as

P (X1 > X2) + P (X2 > X1) =
λ1 + λ2

λ1 + λ2 + λ12
(1.7)

Moreover, denoting min = 1{x1 < x2} + 2 ∗ 1{x2 < x1} and max = 1{x1 >
x2} + 2 ∗ 1{x2 > x1}, the density at point (x1, x2) ; x1 6= x2 may be written
as:

f(x1, x2) = λmin(λmax + λ12)e
−(λ1x1+λ2x2+λ12xmax) (1.8)

The deficit to one is due to the fact that there is a probability mass equal to

λ12

λ1 + λ2 + λ12

on the diagonal. The linear density on the diagonal is equal to

f0(x) = λ12e
−(λ1x+λ2x+λ12x) (1.9)
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as can be derived from looking at the following limit:

lim
dt→0

1

dt
(S(t, t) − S(t, t + dt) − S(t + dt, t) + S(t + dt, t + dt))

The corresponding hazards in our scheme would be

λ01
11(t) = P (X1=t,X2>t)

P (X1≥t,X2≥t) = λ1 ; λ10
11(t) = P (X1>t,X2=t)

P (X1≥t,X2≥t) = λ2

λ00
10(t) = P (X1=t,X2≤t)

P (X1≥t,X2≤t) = λ1 + λ12 ; λ00
01(t) = P (X2=t,X1≤t)

P (X1≤t,X2≥t) = λ2 + λ12

λ00
11(t) = λ12.

It can be seen from the following example of our class of distributions thus
defined:

1.3.3 Our quasi-Marshall-Olkin bivariate distribution:

Let a bivariate distribution be defined as in (1.1), the hazards being equal to:

(11)
λ01

11
≡λ1≡α
−→ (01)

λ00

01
≡λ2+λ12≡β+γ

−→ (00)

(11)
λ10

11
≡λ2≡β
−→ (10)

λ00

01
≡λ1+λ12≡α+γ

−→ (00)

and λ00
11 being identically null. Let us denote

Y = min(X1, X2)
Z = max(X1, X2).

Following the log-likelihood L derived predecingly, we obtain:

L(x1, x2) = 1{x1 < x2} ∗ [−(α + β)y + log(α) − (β + γ)(z − y) + log(β + γ)]
+ 1{x2 < x1} ∗ [−(α + β)y + log(β) − (α + γ)(z − y) + log(α + γ)]

= −(α + β)y − γ(z − y)
+1{x1 < x2} ∗ [log(α(β + γ)) − β(z − y)]
+1{x2 < x1} ∗ [log(β(α + γ)) − α(z − y)]

In order to compare our distribution to Marshall-Olkin’s, let g(x1, x2) be the
density:

g(x1, x2) = λmin(λmax + λ12)e
−(λ1x1+λ2x2+λ12(xmax−xmin)) (1.10)

One can see that only xmax is replaced by xmax − xmin. As a result,
∫ ∞

0
g(x1, x2)dx1dx2 = 1.

It is an A.C. distribution. If we add the λ00
11 as in the preceding paragraph, we

get the Marshall-Olkin distribution.
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1.3.4 Gumbel bivariate distribution

Gumbel bivariate exponential distribution is part of the general Morgenstern
proposal for bivariate distributions:

F (x, y) = F1(x)F2(y)[1 + α(1 − F1(x))(1 − F2(y))], (−1 ≤ α ≤ 1). (1.11)

where F1 and F2 are the respective marginal distribution functions for X and
Y . Gumbel bivariate exponential is thus equal to:

F (x, y) = (1 − e−x)(1 − e−y)[1 + αe−xe−y]/; /; (x ≥ 0, y ≥ 0,−1 ≤ α ≤ 1).
(1.12)

In order to simulate this law, one may notice that the conditional distribution
of Y with respect to X is given by:

P (Y ≤ y|X = x) = (1−α(2e−x − 1))(1− e−y)+α(2e−x − 1)(1− e−2y). (1.13)

1.4 NPML estimation

1.4.1 Likelihood for the bivariate case

Let X = (Xi1, Xi2) be the bivariate survival time of cluster i, i ∈ {1, 2, . . . , n}.
The clusters are assumed to be independent. Xi1 and Xi2 may possibly be right
censored by a bivariate censoring time C = (Ci1, Ci2), independent of X, so that
the observed bivariate time is T = ((Xi1∧Ci1, Xi2 ∧Ci2) ≡ (Ti1, Ti2). The indi-
cator of non censoring is denoted δ = (δi1, δi2) ≡ (1{Ti1 = Xi1}, 1{Ti2 = Xi2)}.
Let then R(t) = (Ri1(t), Ri2(t)) and N(t) = (Ni1(t), Ni2(t)) be respectively
the associated at risk and counting processes defined for i ∈ {1, 2, . . . , n} and
j ∈ {1, 2} as

Rij(t) = 1{t < Tij}
Nij(t) = δij1{t ≥ Tij}

The likelihood will be expressed in terms of the following hazards defined for
X = (X1, X2):

λ01
11(t)dt = P (t ≤ X1 ≤ t + dt|X1 ≥ t,X2 > t)

λ10
11(t)dt = P (t ≤ X2 ≤ t + dt|X1 > t,X2 ≥ t)

λ00
10(t)dt = P (t ≤ X1 ≤ t + dt|X1 ≥ t,X2 < t)

λ00
01(t)dt = P (t ≤ X2 ≤ t + dt|X1 < t,X2 ≥ t)
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The likelihood for the n clusters is the product V =
∏n

i=1 Vi where each Vi may
be written as

Vi =
∏

t(1 − λ10
11(t)dt − λ01

11(t)dt)R1(t)R2(t)(λ10
11(t))

R1(t−)R2(t−)dN1(t)

(λ01
11(t))

R1(t−)R2(t−)dN2(t)
∏

t(1 − λ10
10(t)dt)R1(t)(1−R2(t))δ2

∏
t(1 − λ01

01(t)dt)R2(t)(1−R1(t))δ1 (λ10
10(t)dt)R1(t)(1−R2(t))δ2dN1(t)

(λ01
01(t)dt)R2(t)(1−R1(t))δ1dN2(t)

1.4.2 NPML estimation

Maximization of the log-likelihood (NPML) implies jumps of the Λ′s at (or-
dered) times Tk , k = 1, 2 · · · ,K when an event occurred (δij = 1 for some
(i, j)). Let us introduce the quantities:

τ1(i) = 1{Ti1 < Ti2} ; τ2(i) = 1{Ti2 < Ti1} ; τ(i) = 1{Ti1 = Ti2}
ak = Λ01

11(T
+
k ) − Λ01

11(T
−
k ) ; bk = Λ10

11(T
+
k ) − Λ10

11(T
−
k ) ;

ck = Λ00
10(T

+
k ) − Λ00

10(T
−
k ) ; dk = Λ00

01(T
+
k~) − Λ00

01(T
−
k ) .

and the counts:

s1(i) =
∑

i′ 1{Ti1 ≤ Ti′1 ∧ Ti′2} ; s2(i) =
∑

i′ 1{Ti2 ≤ Ti′1 ∧ Ti′2} ;
s3(i) =

∑
i′ τ2(i

′)1{Ti′2 ≤ Ti1 ≤ Ti′1}} ; s4(i) =
∑

i′ τ1[i
′]1{Ti′1 ≤ Ti2 ≤ Ti′2}} .

Then the log-likelihod is equal to

L = −
∑

i aiδi1τ1(i)s1(i) −
∑

i biδi2τ2(i)s2(i) +
∑

i δi1τ1(i) log(ai)∑
i δi2τ2(i) log(bi) −

∑
i ciδi1τ2(i)bis3(i) −

∑
i diδi2τ1(i)bis4(i)∑

i δi1τ2(i) log(ci) +
∑

i δi2τ1(i) log(di)

By derivation of L with respect to the jumps ai, bi, ci, di, we obtain the following
NPML estimates:

âi = δi1τ1(i)
s1(i) ; b̂i = δi2τ2(i)

s2(i)
; ĉi = δi1τ2(i)

s3(i) ; d̂i = δi2τ1(i)
s4(i)

.

In order to derive the asymptotic properties of the NPML estimates, one
rewrites them in terms of the following associated counting processes.

1.4.3 Associated point processes and martingales

Let

F(t) = σ(Ni1(s), Ni2(s), Ri1(s), Ri2(s), s < t) (1.14)

be a filtration and define four point processes N with associated presence at
risk processes Y , for each case: jump of individual 1 (respectively 2) in the
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presence (respectively absence) of the other element of the pair:

Ni,11:01(t) = 1{Xi1 ≤ t,Xi1 < Xi2 ∧ Ci1 ∧ Ci2} =
∫ t
0 Ri1(s)Ri2(s)dNi1(s)

Yi,11(t) = 1{Xi1 ∧ Xi2 ∧ Ci1 ∧ Ci2 ≥ t} = Ri1(t)Ri2(t)

Mi,11:01(t) = Ni,11:01(t) −
∫ t
0 Yi,11(u)dΛ01

11(u)

Ni,11:10(t) = 1{Xi2 ≤ t,Xi2 < Xi1 ∧ Ci1 ∧ Ci2} =
∫ t
0 Ri1(s)Ri2(s)dNi2(s)

Yi,11(t) = 1{Xi1 ∧ Xi2 ∧ Ci1 ∧ Ci2 ≥ t} = Ri1(t)Ri2(t)

Mi,11:10(t) = Ni,11:10(t) −
∫ t
0 Yi,11(u)dΛ10

11(u)

Ni,10:00(t) = 1{Xi2 < Xi1 ∧ Ci1, Xi2 ≤ Ci2 ∧ t} =
∫ t
0 Ri1(s)(1 − Ri2(s))dNi1(s)

Yi,10(t) = 1{Xi1 ∧ Ci1 ≥ t,Xi2 < t,Xi2 ≤ Ci2} = Ri1(t)(1 − Ri2(t))

Mi,10:00(t) = Ni,10:00(t) −
∫ t
0 Yi,10(u)dΛ00

10(u)

Ni,01:00(t) = 1{Xi1 < Xi2 ∧ Ci2, Xi1 ≤ Ci1 ∧ t} =
∫ t
0 (1 − Ri1(s))Ri2(s)dNi2(s)

Yi,01(t) = 1{Xi2 ∧ Ci2 ≥ t,Xi1 < t,Xi1 ≤ Ci1} = (1 − Ri1(t))Ri2(t)

Mi,01:00(t) = Ni,01:00(t) −
∫ t
0 Yi,01(u)dΛ00

01(u)

The whole asymptotic normal theory holds as the estimates of the cumu-
lative Λ′s, properly normalized converge to independent gaussian martingales
with estimable auto-covariances.

1.5 Concluding remarks

The proposed model could be considered as a multistate model, where the suc-
cessive states are the actual composition of the subset of the cluster that is still
at risk after some members have experienced the expected event. In a future
work, we shall introduce covariates such as cluster and individual covariates
as well as the time elapsed between two successive states of the cluster Let us
finally remark that the parallel with semi-Markov models for multistate models
is not straightforward. This is due to the fact that, for example in the bivariate
case, when the pair is in state (0, 1) the cumulative hazard Λ00

01 starts from 0
and not from the time s at which the first member of the pair experienced the
event. Making the parallel perfect would lead to a new family of models having
all properties of semi-markov multistate models, to which could be applied all
results already obtained for example by Huber, Pons et Heutte (2006).
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