
Chapter 7

Within the sample Comparison of prediction
performances of models and sub-models.

Application to Alzheimer disease.

Abstract. Our objective is to compare the predictive ability of several nested models. It stems
from the following problem in epidemiology: the occurrence of a certain disease is to be pre-
dicted to happen within a fixed period of time thanks to the values of a number of items mea-
sured on the observed patients. It may happen that one or several items, proved to be relevant
for the best fitting model, have a non significant contribution to the prediction of who is at
risk of developing the disease. The indices we use to compare the respective predictive abil-
ity of two models are the Integrated Discrimination Improvement (IDI) and the BRier’s score
Improvement (BRI). Estimation of the models and their relative IDI and BRI are conducted on
the same sample, and their respective asymptotic properties are proved. We apply the results to
Alzheimer disease.

7.1. Introduction

When the objective of modeling a data set is explanatory it is most appropriate to choose the
best fitting model using the usual model selection procedures. But if the objective is to predict
and not to explain the facts, and some of the factors selected by the "best fitting model" are not
available for all subjects, as is sometimes the case for certain genetic markers, one can compare
models by their prediction qualities rather than by their goodness of fit to the data. In this
paper, we consider the case of two competing, nested, probability predicting models, similar
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to Whittemore’s (2010) example, and consistent with Pencina et al. (2008) setting, [M.J 08].
The nested model contains traditional factors, and the larger model contains in addition some
expensive, or generally hard to obtain, often genetic, relevant markers.

7.2. Framework

7.2.1. General description of the data set and the models to be compared

The data set is as follows. X = (Y,Z) is a random variable such that the response variable
Y is binary with values in {0, 1}, and Z is a k-dimensional real variable. Observed are X =
(X1, · · · , Xn), n i.i.d. observations of X , and two models for predicting Y on the basis of Z
are to be compared:

Model 1 P (Y = 1|Z = z) = p1(z)
Model 2 P (Y = 1|Z = z) = p2(z)

while the true distribution of Y given Z = z, which will remain unknown all along, is given by

P (Y = 1|Z = z) = p(z)

This setting originates from a problem in epidemiology: Yi is the indicator of the occurrence of
a specfic disease for subject i within a given period of time. The prediction of occurrence of this
event is based on the value zi of Z observed on subject i. In the special case of linear logistic
models, p1 and p2 are denoted g1 and g2 in the sequel. While g1 is including all k components
of Z, g2 is obtained by dropping k” components of Z, keeping thus only k′ = k − k” < k of
them. Without restriction of the generality, we treat in detail the case when one drops only one
factor. The theoretical aim of this work is to derive the asymptotic properties of the estimators
of the IDI and the BRI in order to obtain for them confidence intervals within the sample used
to estimate the two models.

7.2.2. Definition of the performance prediction criteria: IDI and BRI

From Pencina et al (op. cit.), the IDI of model 2 with respect to model 1 is

IDI2/1 = E[p2(Z)− p1(Z)|Y = 1]
−E[p2(Z)− p1(Z)|Y = 0]

where E denotes the expectation with respect to the distribution ofX . We denote

π = P (Y = 1) := E[p(Z)] ,

the population prevalence of the event under study. We derive a simpler expressions for IDI2/1
to be used later:

IDI2/1 = E [(p2(Z)− p1(Z)) (
Y − π

π (1− π)
)] (7.2.1)

Gu and Pepe, [GU 09], define the PEV (proportion of explained variance) of a model :

PEV =
var(P (Y = 1|Z))

π (1− π)
(7.2.2)
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from which it is clear that:
IDI2/1 = PEV2 − PEV1 (7.2.3)

For a single model p the Brier score is defined as

BR(p) = E[(Y − p(Z))2] (7.2.4)

As the bigger the Brier’s score the worst is the model, we define the BRier’s score improvement
for model 2 with respect to model 1 as

BRI2/1 = BR(p1)−BR(p2)

= E[(p1(Z)− p2(Z))×

(p1(Z) + p2(Z) − 2Y )] (7.2.5)

A negative IDI2/1 as well as a negative BRI2/1 means that the predictive properties of model
2 are not as good as those of model 1. The ranges of IDI and BRI are respectively −2 , +2 and
−1 , +1.

7.3. Estimation of IDI and BRI

Now we assume that we have a sample of size n of X , and the two prediction models
pj(θj , z), defined for j = 1, 2 through the respective parameters θ1, θ2, as:

P (Y = 1| model 1) = p1(θ1, z)
P (Y = 1| model 2) = p2(θ2, z)

7.3.1. General estimating equations for IDI and BRI

Using (7.2.1) and (7.2.5), and denoting for simplicity

p̂ji := pj(θ̂j , zi) for j = 1,2, i = 1, · · · ,n. (7.3.6)

where θ̂j , j = 1, 2 are maximum likelihood estimates for the parameters of models 1 and 2,
natural estimates of IDI2/1 and BRI2/1 are respectively

̂IDI2/1 =
1

n

n∑

i=1

(p̂2i − p̂1i)
yi − y

y(1− y)
(7.3.7)

B̂RI2/1 =
2

n

n∑

i=1

[(p̂1i − p̂2i)(
(p̂1i + p̂2i)

2
− Y )] (7.3.8)

Under usual regularity conditions on models 1 and 2, their parameters estimates are asymptoti-
cally consistent and normal.
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7.3.2. Estimation of IDI and BRI in the logistic case

Let u =< θ, z > be the scalar product of two k + 1 dimensional real vectors θ =
(θ0, · · · , θk) , z = (1, z1, · · · , zk)) and g the function

g(u) =
eu

1 + eu
(7.3.9)

Models 1 and 2 are logistic : p1 ≡ g1 and p2 ≡ g2:

g1(z) = g(< θ1, z >)
g2(z) = g(< θ2, z >)

where some components of θ1 and some (possibly different) components of θ2 are predefined.
If we refer to the motivating example of the introduction :

θ1 = (θ0, θ1, · · · , θk−1, θk)
θ2 = (θ′0, θ

′

1, · · · , θ′k−1, 0)

Dropping the index j for simplicity of notation, we get the log-likelihood Ln:

Ln(θ) =
1

n

n∑

i=1

yi log(g(< θ, zi >))

+(1− yi) log(1− g(< θ, zi >))

=
1

n

n∑

i=1

[yi < θ, zi > − log(1 + e<θ,zi>)] (7.3.10)

Then we estimate the parameters θ1 and θ2 of the two logistic models. Those two estima-
tors, obtained through classical maximum likelihood equations, are proved to be consistent and
asymptotically normal.

7.3.2.1. Asymptotics of ÎDI2/1 for logistic predictors

For simplicity, and since there is no ambiguity as we always consider how model 2 behaves
with respect to model 1, we now drop the index 2/1.
Define ĨDI :

ĨDI =
1

n

n∑

i=1

(g2i − g1i)
yi − y

y(1− y)
(7.3.11)

which is the estimate of IDI when the two models are perfectly known, or more realistically,
estimated "out of the sample", and ĝji:

ĝji = g(< θ̂j , zi >) , j = 1, 2 (7.3.12)
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the estimates of the two models. From equation (7.3.7), by considering (ÎDI − ĨDI) + ĨDI ,
we get

ÎDI =
1

n

n∑

i=1

[(ĝ2i − ĝ1i)− (g2i − g1i)]
yi − y

y(1− y)

+
1

n

n∑

i=1

[g2i − g1i]
yi − y

y(1− y)

:= T1n + ĨDI

THEOREM.– [Consistency of ÎDI] ÎDI
a.s.−−−−→

n→∞
IDI .

Theorem 7.3.2.1 results from the almost sure convergence of T1n to 0, due to the CLT for the
model estimators ĝji and the boundedness of the derivative of g, (g(u)(1 − g(u))u′), and the
fact that

ĨDI
a.s.−−−−→

n→∞
IDI

THEOREM.– [CLT of ÎDI]

√
n(ÎDI − IDI)

L−−−−→
n→∞

N (0, σ2). (7.3.13)

where σ2 = ( 1
(1−π)π

)2 var(V ) with V defined as

V = (g(θ2,Z2)− g(θ1,Z1)− E∆)(Y − π)

+ (Y − g(θ2,Z2))
t(Z2)(I

−1(θ2))E2

− (Y − g(θ1,Z1))
t(Z1)(I

−1(θ1))E1

+ IDI (2π − 1) (Y − π)

where

E∆ = E(g(θ2,Z2)− g(θ1,Z1))

Ej = E[gj(1− gj)(Y − π)Zj] , j = 1, 2

σ̂2 = (
1

Y (1− Y )
)2 ̂var(V )

where σ̂2 is a consistent estimator of σ2.
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7.3.2.2. Asymptotics of B̂RI2/1 for logistic predictors

Again, we drop the index 2/1, and consider the estimated BRI (7.3.8).

B̂RI =
2

n

n∑

i=1

[(g(< θ̂1, Zi >)− g(< θ̂2, Zi >))×

× (
(g(< θ̂1, Zi >) + g(< θ̂2, Zi >))

2
− Yi)]

Using the same method as for IDI, we get

√
n(B̂RI −BRI) =

1√
n

n∑

i=1

(Wi −BRI) + oP (1)

where the random variablesWi are defined as

Wi = 2[(g(< θ̂1,Zi >)− g(< θ̂2,Zi >))×

× (
(g(< θ̂2,Zi >) + g(< θ̂1,Zi >))

2
− Yi)]

− (Yi − g(< θ̂2,Z2i >))tZ2iI
−1(θ̂2)(2E2 − E4)

+ (Yi − g(< θ̂1,Z1i >))tZ1iI
−1(θ̂1)(2E1 − E3)

where the expectations Ej , j = 1, · · · , 4 are defned as

E1 = E[g(< θ1,Z1 >)(1− g(< θ1,Z1 >))Z1×

× (
g(< θ2,Z2 >) + g(< θ1,Z1 >)

2
− Y )]

E2 = E[g(< θ2,Z2 >)(1− g(< θ2,Z2 >))Z2×

× (
(g(< θ1,Z1 >) + g(< θ2,Z2 >))

2
− Y ))]

E3 = E[g(< θ1,Z1 >)(1− g(< θ1,Z >))Z1(g(< θ2,Z1 >)

−g(< θ1,Z1 >))

E4 = E[g(< θ2,Z >)(1− g(< θ2,Z2 >))Z2(g(< θ2,Z2 >)

−g(< θ1,Z2 >))

Actually, we have,
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THEOREM.– [Consistency of the estimated BRI]

B̂RI
a.s.−−−−→

n→∞
BRI (7.3.14)

THEOREM.– [CLT for B̂RI]

√
n(B̂RI −BRI)

L−−−−→
n→∞

N (0, σ2
B). (7.3.15)

A consistent estimate of σ2
B = var(W ) is given by

σ̂2
B =

1

n− 1

n∑

i=1

(Ŵi − Ŵ )2.

The estimated W’s are obtained by replacing all parameters by their maximum likelihood esti-
mates and expectations by sample averages.

7.4. Simulation studies

We do two different simulations: one to check the behaviour of our estimates of IDI and
BRI, and the the other parallel to Gu and Pepe’s.

7.4.1. First simulation

Our basic model to simulate the data is a logistic one with two independent covariates:
Z1 ∈ {−1, 0, 1} with respective probabilities (.2, .4, .4), and Z2 ∈ {0, 1} with respective
probabilities (.2, .8), with θ = (0, 2, 1) so that

L (Yi|Zi) = Bernoulli(
exp(2Z1i + Z2i)

1 + exp(2Z1i + Z2i)
).

This is the true model used to simulate the data.
We generate 1000 samples of 1000 triplets (Yi, Z1i, Z2i). On each sample thus obtained, three
logistic models are considered : model 1 including both covariates, θ1 = (θ10, θ11, θ12), model
2 including only Z1, θ2 = (θ20, θ21, 0) and model 2’ including only Z2, θ2′ = (θ2′0, 0, θ2′2).
We know the true values of θ1, θ2 and θ′2: the first one is equal to θ of the true model:

θ1 = (0 , 2 , 1).

and the two other ones are obtained by minimizing the Kullback distance between the true law
and the logistic based on covariate Z1 alone and Z2 alone respectively:

θ2 = (0.096 , 1.969 , 0)
θ2′ = (0.307 , 0 , 0.674)

The true values of IDI2/1 and IDI2′/1 can thus be computed :

IDI2/1 = −0.01037.
IDI2′/1 = −0.3282.



128 Statistical Models and Methods for Reliability and Survival Analysis

Table 7.1. Comparison of the estimated and simulated standard errors of ̂IDI2/1 and

̂IDI2′/1.

Asymptotic Empirical
standard error of IDI2/1 0.0057029 0.0052650
standard error of IDI2′/1 0.025556 0.026306

Table 7.2. 95% Confidence intervals for IDI2/1 and IDI2′/1.

95% confidence interval True value
IDI2/1 -0.02140714 -0.00076843 - 0.01037
IDI2′/1 -0.38141 -0.27829 - 0.3282

Table 7.3. Brier’s scores and BRI for the three models.

Brier’s score BRI with respect to model 1
model 1 0.1603 0
model 2 0.16281 - 0.002511
model 2’ 0.23962 - 0.079316

Table 7.4. 95% Confidence intervals for BRI2/1 and BRI2′/1.

95% confidence interval True value
BRI2/1 -0.00535781 -0.00067996 -0.002511
BRI2′/1 -0.090107 -0.069466 -0.079316

For each sample we estimated the three models and computed ̂IDI2/1 and ̂IDI2′/1, as
well as our estimates of their standard errors. In table 1 below, we compare the mean estimated
asymptotic standard errors of the IDI’s, and the empirical standard errors of the estimated IDI’s.
The true values of the Brier’s score of the three models lead to the true values of the BRI of
models 2 and 2’ with respect to model 1:

It can be seen from the QQ plots below, that the estimated IDI for model 2’ with respect
to model 1 is close to the normal while the estimated IDI for model 2 with respect to model 1,
which is very small, is more erratic. The same occurs for the QQ plots of the BRI’s.

7.4.2. Second simulation along Gu and Pepe’s

Gu and Pepe’s example is as follows: they assume that there is only one covariate, so that
Z = (Z0, Z1), Z0 being fixed and equal to 1, that the laws of Z1, conditionally on Y = 0 and
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Figure 7.1. qqplot for IDI2/1 and IDI2′/1

Y = 1, are normal and that P (Y = 1) = 0.2:

P (Y = 1) = 0.2
L (Z1|Y = 1) = N (1, 1)
L (Z1|Y = 0) = N (0, 1)

Computing the law of Y conditional on Z1, we get the following logistic model

P (Y = 1) = pi1 = 0.2
θ = (θ0, θ1) = (log(pi1/(1− pi1))− .5 , 1)
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Figure 7.2. qqplot for BRI2/1 and BRI2′/1

P (Y = 1|Z1 = z1)

=
exp(z1 + (log(pi1/(1− pi1))− .5))

1 + exp(z1 + (log(pi1/(1− pi1))− .5)

P (Y = 0|Z1 = z1)

=
1

1 + exp(z1 + (log(pi1/(1− pi1))− .5)
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Three different expressions are given by Gu and Pepe for the PEV:

PEV =
var(P (Y = 1|Z1))

pi1(1− pi1)

=
var(Y )− E(var(Y |Z1))

var(Y )

= corr(Y, P (Y = 1|Z1))

It seems that the third definition is not correct as the result for the three definitions given by
1000 simulations of a sample of size 1000, are respectively 0.15433, 0.15503 and 0.39384

7.5. The Three City Study of Alzheimer disease.

The Three-City (3C) study is a cohort study conducted in three cities in France (Bordeaux,
Dijon, and Montpellier), aiming to estimate the risk of dementia and cognitive impairment
attributable to vascular factors.1 A sample of non-institutionalized subjects aged 65 years and
older was selected randomly from the electoral rolls of each city (The 3C Study Group. Vascular
factors and risk of dementia. Design of the Three-City Study and baseline characteristics of
the study population. Neuroepidemiology. 2003; 22:316-325.) Each follow-up examination
included cognitive testing and dementia diagnosis.

We have obtained official permission to use the data for the purpose of studying the con-
tribution of the genetic marker APOE4 to the prediction of developing dementia in the next
four years beyond the traditional variables: age at recruitment into the study, gender, education,
indicator for depression, indicator of previous cardiologic complications, indicator of consump-
tion of psychotropic medication, and indicator of incapacitation of any sort. We were given a
sub-sample of n = 4486 men and women among which 162 developed Alzheimer within four
years.

After removing records with missing data we ended up with n=4214 records. Based on
these data we fit the best model. It included the genetic marker APOE4:

1) Age at recruitment in 3 classes: 65 ≤ Age < 71,71 ≤ Age < 78,≥ 78,

2) Education level,

3) Past history of vascular disease,

4) Use of psychotropic drugs,

5) Incapacities in activities of daily living,

6) The genetic marker APOE4.

All the covariates are highly significant.

For the model without the genetic marker:
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Table 7.5. Logistic model 1 including the genetic marker APOE4.

Estimate Std. Error Pr(>|z|)
(Intercept) -2.944 0.176 < 2e-16
age.fac.31 -2.089 0.330 2.3e-10
age.fac.32 -0.984 0.191 2.5e-07
nivetudes.spec -0.430 0.180 0.0167
card 0.616 0.233 0.0081
depress 0.786 0.201 9.5e-05
incap 1.180 0.206 1.1e-08
APOE4 0.634 0.195 0.0012

AIC = 1094

Table 7.6. model 2 : Logistic model without the genetic marker APOE4.

Estimate Standard Error p-value
(Intercept) -2.797 0.168 < 2e-16
age.fac.31 -2.060 0.330 4.0e-10
age.fac.32 -0.963 0.190 4.2e-07
nivetudes.spec -0.434 0.179 0.0155
card 0.677 0.231 0.0034
depress 0.805 0.201 6.2e-05
incap 1.124 0.206 4.6e-08

AIC = 1102

Clearly, model 1 that includes APOE4 is significantly a better fit to the data than model
2: it has a smaller AIC and the coefficient of APOE4 is highly significant. We turn now to
check whether including APOE4 improves also significantly the prediction ability of model 2,
by estimating the indices IDI2/1 and BRI2/1. We estimate the IDI and the BRI of model 2
with respect to model 1 directly from the data, and then ran a bootstrap with 1000 repetitions
to obtain a competing estimate of the standard errors of the indices, as well as 95% confidence
intervals for the true IDI and BRI for the Dementia data.

We placed the sample estimates and the bootstrap estimates in the same display.

These results certainly suggest that the dementia model that includes the genetic marker
APOE4 is not significantly superior to the model without APOE4 in predicting the development
of dementia. This result is obtained both in regard to model discrimination as measured by the
IDI, and model calibration as measured by Brier’s score difference for the two models.
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Table 7.7. Sample and bootstrap estimates for IDI.

Sample Bootstrap Sample Bootstrap
Mean Mean Std Err Std Err
-.00298 -.00374 0.00303 0.00328

Table 7.8. Sample and bootstrap estimates for BRI.

Sample Bootstrap Sample Bootstrap
Mean Mean Std Err Std Err
-6.09e-05 -9.02e-05 0.000115 0.000129

Table 7.9. Asymptotic and Percentile Bootstrap 95% Confidence Intervals (CI) of IDI for the 3

cities study

95% Confidence Interval for IDI
Asymptotic -0.008911 +0.002958
Bootstrap -0.012012 +0.000389

Table 7.10. Asymptotic and Percentile Bootstrap 95% Confidence Intervals (CI) of BRI for the

3 cities study

95% Confidence Interval for BRI
Asymptotic -2.87e-04 1.65e-04
Bootstrap -4.08e-04 9.03e-05

The bootstrap distributions for both the IDI and the Brier score difference remain somewhat
of a mystery. Note that in both cases the bootstrap standard error is smaller than the asymp-
totic standard error as computed from the sample. More significantly, the QQ normal plots
below show that in both cases the bootstrap distribution, although based on 1000 repetitions,
is markedly non-normal. That explains the fact that the bootstrap confidence intervals in both
cases are wider than their corresponding asymptotic confidence intervals based on the indices
and their standard errors as estimated from the sample.

7.6. Conclusion.

We present results that enable researchers to do inference on two important indices for mea-
suring the relative effectiveness of two models in predicting the probabilities of future events.
Most importantly, we allowed for model estimation prior to index computation on the same
data by providing new standard errors for both the IDI and the BRI when the indices are com-
puted on the same data that provided model parameter estimates. There are additional indices
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for comparison of models predictiveness accuracy and discrimination. We mention in partic-
ular the difference in the area under the ROC curve of two models and Pencina et al’s (2008)
Net Reclassification Improvement NRI. We are currently working on the asymptotic theory for
these indices when parameters are estimated from the same data as the indices.

We have tested our asymptotic results and standard error formulae in simulation studies. We
then applied them to Alzheimer data from the French Three Cities study and did not find any
evidence to support the effectiveness of the genetic marker APOE4 in predicting occurrence
of Alzheimer beyond that achieved by standard non-genetic predictor variables such as age,
education, and additional health variables.

One unusual finding is the markedly non-normal bootstrap distribution for these data, based
on 1000 bootstrap samples. Although in simulations we found no unusual behavior of the
bootstrap distribution, for the dementia data, the bootstrap distribution for the IDI, with in-
sample estimation of the models, is visibly right skewed, whereas the bootstrap distribution for
the Brier difference, again with in-sample model estimation, is visibly left skewed. We offer no
explanation for these phenomena at this time.
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