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14.1 INTRODUCTION

A common feature of many failure time data in epidemiological studies or reliability
studies is that they are simultaneously censored and truncated. There are various
types of censored data with the most common type the right-censored data case
which occurs when the failure time is not observed completely in the sense that it is
only known to be larger than a censoring time which often is the end of the study.
Censoring can also occur from the left, that is, when we only know that the time of
interest happened before a censoring time. We may also have interval-censored data.
This case usually occurs from grouped data or from the fact that patients or technical
systems are examined at certain dates and the event of interest is only known to have
occurred between two specific checking times.

Additionally, survival or reliability data could be truncated. There are also various
types of truncation. For example right-truncated data occur in registers. An acquired
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200 Stochastic Models in Reliability Engineering

immune deficiency syndrome (AIDS) register only contains AIDS cases which have
already been reported, which generates right-truncated samples of induction times.
We also may have left truncated data or interval truncated data. In the latter case,
observation of a process is for example not continuous in time and is done through a
window of time (a time interval) which could exclude totally some subjects from the
sample. This occurs in particular when the event of interest results in an irreversible
change of state of the subject, that is, at time ¢, the subject is in state one, while at
time #,, it is in state two.

Both censoring and truncation create difficulties in the estimation of the param-
eters involved in the hypothesized models to describe these types of data. One could
consider parametric, semi-parametric, or non-parametric models in order to describe
a given dataset in the most efficient way. In this chapter we will concentrate on the
non-parametric case only.

Turnbull (1976) and Frydman (1994) dealt with the non-parametric estimation of
the distribution function F' when the data are interval-censored and truncated. For
the same case, non-parametric maximum likelihood estimators of the cumulative
hazard function together with finite dimensional parameters associated to covariates
are obtained in Alioum and Commenges (1996) for the Cox model and in Huber and
Vonta (2004) for a generalization of the Cox model, that is, frailty or transforma-
tion models. Huang (1996) and Huang and Wellner (1995) examined the theoretical
aspects related to the non-parametric maximum likelihood estimator (NPMLE) of
the regression coefficient and the baseline distribution, in the case of the Cox model
as well as in a class of semi-parametric models, with interval-censoring. Huber,
Solev and Vonta (2009) give conditions on the involved distributions, the censoring,
truncation, and failure distributions, all three of them assumed mutually indepen-
dent, under which the consistency of the non-parametric maximum likelihood esti-
mator of the density of the survival or reliability function, is established along with
the rate of convergence.

In this work we review existing results for the case of censored and truncated data.
In Section 14.2 we define a marginal non-parametric likelihood for interval-censored
and interval-truncated data first introduced in Turnbull (1976) and later studied by
Alioum and Commenges (1996) and Huber and Vonta (2004) in connection also to
parametric and semi-parametric models. In Section 14.3 we formulate a complete
non-parametric likelihood for interval-censored and interval-truncated data. Without
restriction of the generality, we consider the case of right truncation. In order to derive
this likelihood we define a common law of censoring and truncation. The censoring
mechanism is represented as a denumerable partition of the total interval of observa-
tion time (a, b). A truncation is added to the censoring, conditioning the observations
both of the survival and the censoring processes. As the section progresses, three dis-
tributions are successively studied, each one being conditional on fixed values which
become random in the next subsection, leading finally to the joint law of censoring and
truncation. In the last subsection of Section 14.3, based on the whole likelihood we
discuss consistency in Hellinger distance of the density of survival or reliability under
regularity conditions. We give assumptions on the set ./~ of densities f of the survival
time X which allow us to derive consistency of the NPMLE estimator of f along with
the convergence rate (Huber, Solev and Vonta (2007) and (20009).
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In Section 14.4 we provide an example where the joint law of the censoring and
truncation can be explicitly computed, and which satisfies the conditions to get con-
sistency and convergence rate of the NPMLE of the density f of the survival or reli-
ability function.

14.2 FORMULATION - MARGINAL NON-
PARAMETRIC LIKELIHOOD

We present here the general framework of the case of arbitrarily censored and
truncated data for independent and identically distributed positive random vari-
ables following the formulation of Turnbull (1976), Frydman (1994) and Alioum
and Commenges (1996). Let X, X,, ..., X, be independent and identically distrib-
uted positive random variables with survival function S(x)=P(X>x). For every
random variable X; we have a pair of observations (A,, B;) where A, is a set called
the censoring set and B; a set called the truncating set. The random variable X;
belongs to the sample only if X, falls into the set B,. Also, X; is being censored by
the set A, in the sense that the only thing that we know about X; is that it belongs to
the set A; where A; < B;. The sets A, belong to a partition 7 of [0,c0) and we assume
that B, and 7} are independent of X; and of the parameters of interest. We assume
that the censoring sets A,, i = 1, ..., n can be expressed as a finite union of disjoint
closed intervals, that is:

ki
A= U [Ly, Ry]
j=1
where

OSLH SRil <Li2 SRiZ <"'<Liki < Rikl- <o for i=1,...,n, Ril >0, Likl- < 00
Moreover, we assume that the truncating sets B, can be expressed as a finite union
of open intervals:

B = Uj;(ﬁz:f’ﬁﬁ)
where

0< Ly <Ry <Lin <Rpp <...< Ly, <Ry, <0 for i=1,....n.

The likelihood of the n pairs of observations (4;, B,), i=1, 2, ..., n is proportional to:

n

S(Lj)~S(R})

(14.1)

Py(A) :ﬁZ?_I{
i=1 {

()= 1L = -
H i Ps(B) z ,~l=1 S(Ly) - S(R;)}
Let us define now the sets:

L={Lj1<j<k,1<i<n)U{Ry,1<j<m,1<i<n}u{0)
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and

R={R;, 1< j<k,1<i<n}U{L;,1<j<n,1<i<n} o).

Notice that the above likelihood is maximized when the values of S(x) are as large as
possible for x € L and as small as possible for x € R. A set Q is defined uniquely as
the union of disjoint closed intervals whose left endpoints lie in the set L and right

endpoints in the set R respectively, and which contain no other members of LorR.
Thus:

0= _[4-r]

where 0=q; < pi < g5 < p5 <...<q, < p, =o. Subsequently, we denote by C the
union of intervals [q_’i, p',] covered by at least one censoring set, W the union of inter-
vals [q_',-, p',] covered by at least one truncating set but not covered by any censoring

set and D = (UB;) the union of intervals [q}, p}] not covered by any truncating set.
D is actually included in the union of intervals [q_’,-, p;] That can be proved as fol-

lows. Let r be a point not covered by any truncating set and neither being a left nor a
right endpoint of a truncating set. Then there exists / such that r € [q}, p;] as:

Rilfl :maXi’j{Rij . ﬁij<r} <r

[’iz.iz
so that r € [q},p[] = I:Riljp‘ciz.iz:l'

= mln,,/{[,,] : RU > r} >r

Obviously, the set Q can be written as Q = C U W U D. Let us denote the set C as:

c =UZI[%’PJ

where ¢ <p<g:<p;<..<q,<p,. Let s;=5;(q7)-S5;(p;')) where
Sp(x) = P(X > x‘ Xe B) The likelihood given in (1) can be written as a function of

S1,82,...,8, thatis:

2 Z’TT_ HySj

i) = | [ o— (14.2)
i=1 iSj

2

Whereu,_-i=l[[ andv,;]-=l[[ ,i=1,...,nand j=1,...,m. The NPMLE

aj.pj <4 |

of S5 was discussed by Turnbull (1976) and Frydman (1994). Turnbull (1976)

4j.pj |<B;]



Censored, Truncated Data in Survival and Reliability Models 203

suggested a self-consistency algorithm in order to estimate the parameters sy, ...,S,,.
The algorithm is simple to implement and intuitively appealing.

Lemma 1. Any survival function S which decreases outside the set C U D cannot
be the NPMLE of S.

Lemma 2. For fixed values of S(q;”) and S(p;”), for 1< j <m, the likelihood is
independent of how the decrease actually occurs in the interval |q,p;], so that S is
undefined within each interval [q;,p;].

For details in the proofs see Alioum and Commenges (1996) and Huber and Vonta
(2004).

14.3 FORMULATION - COMPLETE NON-
PARAMETRIC LIKELIHOOD

In the previous section we considered the likelihood of the observations A,, B,
i =1,...,n which is not in fact a complete likelihood because it is defined condition-
ally on the censoring sets A; and the truncating sets B,. In this section we formulate
the theory for a joint law of censoring and truncating mechanisms.

14.3.1 THe LAw oF CENSORING AND TRUNCATION

14.3.1.1 Random Covering

Let 7 be a random partition defined on (a; b), where usually a will be equal to 0 and
b afinite strictly positive number but it could also be oo:

K
= {Yo =a<¥<..<Ye<Yea=b | JWv1= (a,b]} (14.3)

Jj=0

where K is a fixed number in {2, ..., K;)} for some given K, such that 2 < K, < c0. The
number K could of course be generalized to be random.
For each x € (a;b) we define:

k= k(x)=inf{j: x <Y,,}. (14.4)

9(x) = (Ve Yoo | = (LX), R(x) | x & (a, D). (14.5)
where L(x) and R(x) may be thought of as the left and right values in partition 7 that
“bracket” (the survival) X=x.

Then it is clear that:

I(x)=9(), or I(x) NI y)=D (14.6)

and we call 9(x) a simple random covering of (a, b).
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14.3.1.2 The Mechanism of Censoring and Truncation

The mechanism of censoring and truncating of a random variable X is defined
as follows. Let X be a random variable, A=(Z,,Z,] be a random interval,
9(x)=(L(x),R(x)],xe(a,b) be a random covering, generated by a partition 7
defined in Equation (14.3).

We suppose that the random covering J(-), the random variable X and the random
interval A are independent, but we do not have complete observations. More pre-
cisely, we suppose that the random vector (X, Z,, Z,) is partly observable only in the
case when (L(X),R(X)] c A:

Z, < L(X)< R(X) < Z,.

Inthatcase the available observations are the censoring interval (L(X), R(X)] of the cov-
ering 9(-), which contains X, and the random truncating interval A= (R(Zl),L(Zz)].
When (L(X),R(X)] feud (Zl,Zz] we do not have any observation.

Let us define:

1) Conditionally on a fixed value 7 of 7 the random interval A is taken from the
conditional distribution:

P {A} = P{A € A‘ the interval [Z,,Z,] contains at least two points of t}.

In other words, conditionally on fixed values of 7=¢ the random vector
Z=(Z,, Z,) is taken from the conditional distribution:

P{B}=P{ZeB

3(1.Z) < 320,22)} = P{Z eB|R(Z)< L(Zz)};

2) Conditionally on a fixed value of r=¢ and A =a=(z,2;], the random vari-
able X is taken from the conditional distribution:

P.{C}=P{X eC|X (R(z)), L(z) |}

In other words conditionally on fixed values of 7=t and Z, =z, Z,=z, the
random variable X is taken from the conditional distribution:

P{c

L0} = P{X eCX e(51(2),0(.2)] = (R@), L) ]}, (147)

We now consider the simple case of right truncation where for a random variable Z
the random truncating interval takes the form A=(a,Z], and we use the same nota-
tions as previously in this section. We denote by 3 the random variable:

3=5(1.2)=L(Z).

Recall that the random covering 9(:), the survival X, and the truncating random vari-
able Z are independent.
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In this case, Equation (14.7) above becomes:
Conditionally on fixed values of 7=¢ and Z=z the random variable X is taken
from the conditional distribution:

P{C|t.z} = P{X e C|X <3(t,2) = L(2)}.

14.3.1.3 The Distribution Associated with the Random Covering

Let 3(x) = (L(x),R(x)], x € (a,b), be a simple random covering. The distribution P,
of random vector v(x) = (L(x),R(x)) will be called the distribution associated with

the random covering 9(x).
We assume that for all x the distribution P, has density with respect to Lebesgue

measure A2 on the plane R*:

dP,
dr?’

It is easy to see that there exists a non-negative function r(u, v) such that for all x:

r.(u,v) =

re(u,v) =r(u,v)I,,(x) (as.)

The function r(u, v) will be called the baseline density of the simple random cover-
ing 8(x). It is clear that the function r(u, v) is the density of a o-finite measure, but, for
all x, the function r(u,v)II . (x) is the density of a probability measure.

It is easy to see that the baseline density r(u, v) depends only on the joint distribu-
tions of vectors (Y,Y},).

Lemma 3. The measure P, is absolutely continuous with respect to the Lebesgue
measure for all x and fixed K if and only if:

() foralljthe distribution of the vector (Y,,Y,,)) has density ri(u, v) with respect
to the Lebesgue measure,
(ii) the series zj i (u,v) < oo (A2-a.s.) to a function r(u, v),

(iii) the function r(u,v) satisfies the following condition:
for all x:

r.lx(u’ V) = r(u, V)]I (u,v](-x)'

14.3.1.4 The Distribution of the Random Vector (L(x), R(x), L(z), R(z))

From now on we concentrate on the case of right truncation. Due to censoring by
the partition ¢, z is not observed. Instead we have ]L(z); R(z)] > z, and only L(z) is
observed. Now for x <z we denote by P, _ the distribution of the random vector (L(x),

R(x), L(2), R(2)).
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Denote by A" the Lebesgue measure on R". The distribution P, _ is not abso-
lutely continuous with respect to the measure on 4% Denote by v the measure,
which is defined for continuous non-negative functions y(s) =y(s,,,53,5,) by the

relation:
[[[]w v = [[wesssssdsas,

+_U W (81,52,52,54)dsds,ds,
+ IIIIW(SIa 82,83,84)dsids,dssds,.

We suppose that the distribution P, is absolutely continuous with respect to the
measure v and denote its density by g, (s):

dP..

dv

qx,z(s) = qx,z(slas27s3’s4) =

We suppose that for all n> 0 the random vector (Y}, ..., ¥,) has a density with respect
to the corresponding Lebesgue measure 4. For i + 1 <j and K fixed let the function:

7 ;(V1, Y2, y3, ¥4) be the density of the random vector (Y, Y.y, Y;,Y;.1),

r;(y1,¥2,y3) be the density of the random vector (¥;_;,Y;, Y;.1),

and
r/(y1,¥,) be the density of the random vector ¥, Y).

We assume that:

04()’1,)’2’Y3a)’4) = erj(Yhyz,)’bﬂ) < (14-3.&),
i+i'1j<:j

03V, y2,¥3) = Z”j()’l,yz,)@) <o (A-as.),
J

and

(1, y2) = er()’hyz) <o (A*-as.).
J

For a non-negative function v (s), s = (sl,sz,s3,s4) and x <z we have
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Ey (L(0), R(x), L@, R@) = D BY XY, YY) L i (O ()
iJ
= Z Ey(Y;,Y;..,Y;,Y; )1 (Y_]-,Y_M](X)]I (Yj,Y]-H](Z)
J

](Z)

Jj+1

+Z Ey(Y,.,Y,,Y;,Y; DI (Y_,-_I,Y]-](X)H Y
J

+ D EY LYY 0 g (O, ().
i,j:
i+l<j

Thus:

Ey (L(x),R(x),L(2),R(2))

=+ | v (s1,52,81,82)02(51,52) L () 5, 1 (DT (5 5,1(2) 1S,

+ j V(5105205225005 (51252 )T (i (DT 1,1 (2)lsidls s,

+ IIW(SI’S2’335S4)

X 04 (81582553, 84) L (5 551 W (5 5,1(2)ds1ds,ds3ds4.

If we define a v-measurable function (s

D(s

X’Z), §= (sl’SZaS3’S4)’ by

x,z) =1 5 (X)0- (s ‘z),

where

05081, (5, ,1(2)s if 5y =1s53<s,=14
03081552, 84) W (4, ,1(2), if ) <sy=53<54

o (s|z)=4" (2.5 _ (14.8)
04(51,82,83,5) W (5, 5,1(2),  if 5 <55 <53 <84

0, else

then we obtain for x<z

Ey (L00.R.LE.R@) = [ [ [ Jwisn(s|xz) av.

and therefore

Gy (851,82,83,8,) =1 (51,52](x)0* (51,S2,53,S4 ‘ Z)- (14.9)



208 Stochastic Models in Reliability Engineering

14.3.1.5 The Distribution of the Random Vector (L(X), R(X), L(Z), R(Z))
For the right-truncated density function f(x) we shall use the following notation:

f(x)
J<h f(u) du

u

fhs (x)= I (a,bsj(x)-

Now we suppose that for fixed z and fixed value of 7=¢, the random variable X
is taken from the truncated distribution with density f,(x). Here 3 = 3(t,z) = L(z)
. It follows from Equation (14.9) that in that case the distribution P_ of ran-
dom vector (L(X), R(X), L(z), R(2)) has density (with respect to the measure v)

Q(slss2’s3’s4 ‘ Z):

q(shsz”'t"}

)= [ et 0 d.

and (see Equation (14.8))

q(shSZau’v

)
Z) = J Ju(X)dx x 0. (sl,sz,s3,s4‘ z),

s]

where for s=(s,,5,,53,5,)

D3(‘5‘155‘27‘5‘4)11 (A‘z,u](z)’ if 1 <8 =853< 84
[ (S ‘Z) = D4(SI,S2,S3,S4)]I (S3VS4](Z), if 8§51 <8 <S§53<8y

0, else

Therefore the distribution P, is absolutely continuous with respect to the measure v,
which is defined for continuous non-negative functions y(s) by the relation

IIIIW(S)dV* = ‘U W (81, 82,82,54) dsidsds,

+ J‘IIIW (sl 82,53, S4) dsldSst3ds4’

and

dP,
dv. q(s ‘Z)

Now suppose that Z is a random variable with density g, which is independent from
the random covering J(). For fixed values Z=z and 7=t¢, the random variable X is
taken from the conditional distribution with density f;(x), 3 = 3(¢,z) = L(z). Denote

by P, the distribution of the random vector (L(X), R(X), L(Z), R(Z)). It is clear that the
distribution P, has density g(s) with respect to the measure v,:



Censored, Truncated Data in Survival and Reliability Models 209

52
q(s1,82,1,54) = J. Jux) dX><J.D* (s1,52.1,54] 2) 8(2) dz

51

5
- f i) dxx 051, 52.10,52).

51

Now consider the random vector W= (L(X), R(X), L(Z)). Let " be the measure on R,
defined for continuous non-negative functions y by:

j j j Wst,52,55) dv™ = j j W (51,52,5,) dsidiss
+ﬂ W (51252,55) dsydssds,

It is clear that the distribution Py, of random vector W is absolutely continuous with
respect to the measure v and:

dP,
P = p(y1,y2,¥3) = d‘/l = Iq(yl,yz,yg,u) du.

Therefore:

plu,v,2) = j £ drxr(u,v,2),

where

r(u,v,z) = ID(M,V,Z, Xx) dx.

14.3.2 ESTIMATION OF THE DENSITY OF SURVIVAL OR RELIABILITY

In this part we present theoretical results about consistency under certain regular-
ity conditions on the law of censoring, truncation, and survival of the density of the
survival time X. The formulation is as follows. Let W, W, ..., W, be i.i.d. random
vectors, W=(L(X), R(X), L(Z)), with unknown density:

f(x) dx
pu,v,w) =ru,v,w)xs4t———- (14.10)
[ rwa

We assume that the baseline density r and density f belong to given sets G and F
correspondingly (see details in Huber, Solev and Vonta, 2009). We set:
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jvf(x) dx
o(fiu,v,w) = FH4——,
[ rwa
s ={p:p=ro(fi).(r.f)eGxF} (14.11)

Definition 1. Let y be a bounded set in R4 0<a<l,r eN,and p=r¥+a.

Then ’/M’f) is the set of all functions from y onto R that possess uniformly bounded
partial derivatives up to order r* and whose highest partial derivatives are Lipschitz
functions of order a. More precisely, for any k=(k,, ..., k,):

D*g(x)

HgHﬂ = maxzkiﬁr* Supx

. . (14.12)
ID*g(x)—D*g(y)

+ max L Supyy
2 e

where the supremum is taken over all x, y in the interior of y with x#y.

o

Theorem 1. Suppose that the parameter of interest, that is, the true density f, with
respect to Lebesgue measure, of the survival time X, belongs to the space:

= (f : fe VMi with compact support y andO0<¢; < f <¢, < oo) (14.13)

with #>1/2. Also, suppose that the density r which describes the censoring and
truncation mechanism is known and bounded by a constant r,>0. Then the non-

parametric maximum likelihood estimator fn is consistent in the Hellinger distance
for the density f, namely, for any & > 0:

sup Pp{h(fn,f)>8}—>0,asn—>oc.

p=pr‘f e

More specifically, the rate of convergence is given by:

__b L
sup P, {h(f,,,f) >n Zﬁ“}s Cexp(—c2 nzﬁ”).

p=pfer

The proofs use results of Stein (1993), Wong and Shen (1995) and van der Vaart and
Wellner (2000) on non-parametric estimation.

14.4 EXAMPLE

We will provide here an example of the joint law of censoring and truncation in order
to illustrate some of the theoretical results provided in the previous sections. We will
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consider for simplicity the right truncation case. We also consider as the total inter-
val of observation time the interval [0,1]. Since we do not want to have any boundary
issues we consider the interval [0 +¢&,1—¢&]=[a.X,b.X] where ¢ is small. For a fixed
m, we consider m+1 equidistant times {z;,j =1,...,m+1}. m is thus the number of
sub-intervals of [a.X; b.X]:

tj:a.X+(j—1)M j=1,,m+1.
m

The censoring time Y; is assumed to occur uniformly inside the jth interval so that:

m

2
(b,X—a,X)J 1[tj,tj+1[(yj)1[zj+1,zj+2[(yj+1)

r'i()’j,)’jﬂ):(

m

4
a.X)) Yt 1O Qi 01 D)

ri,_;(yi,yi+1,y_;,yj+1) = ((b X_

iyt O g0, 21 G

At the same time, the right-truncating variable Z follows an independent uniform
(a.Z, b.Z) distribution where b.Z> 1 is fixed. So:

1
f2(2) = 7 aZ’ for a.Z<z<b.Z.
It is natural to assume that a certain proportion z of Y’s, say for example 7= 3/4 of the
Y's have occurred before the truncating variable truncates the sample.

Let therefore a.Z=Y,_ where j.z=[zm]. It is also reasonable to assume that some
subjects share the same truncating value although in full generality each subject
could have its own truncating value.

The survival time X follows adistribution withunknown density f(x),x €[a.X,b.X]
with respect to the Lebesgue measure on R', which we assume to belong to the space

./~ defined in (13). What we observe actually is W,, ..., W,, a sample of i.i.d. random
vectors, where W=(L(X), R(X), L(Z)), with density:

J:: f(x)dx
ngw f(x)dx .

p(u,v,w) = r(u,v,w)x

We would like to compute r(u, v, w) for the above-described case of interval-censor-
ing and right truncation.

Lemma 4. For the observational scheme described above, the density r(u, v, w) of
the censoring and truncating mechanisms, has two parts, denoted by ry and r,. The
law ry is defined as:
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13V V=15 Y1)

(Vs Yist) ifl<k<jz-1
k- _ _ (14.14)
R (m-k-1)bX-aX)/m+((bZ-b.X) ifjz—1<k<m—1
bZ-aZ
0 itk=m

fora X <y, <y <y <b.X

while the law r, is defined as:

0 ifl<k<jz
b.X—-aX)/ . .
By = | ey CXZGXM s jandk<m (14.15)
b.Z—-aZ
. bZ-bX .
) 2L if k=
" (Ve> Yk l)b.Z_a.Z m

for a X <y, <y, <b.X.
Note that the above joint law of censoring and truncation satisfies the above gen-
eral assumptions and in particular the boundedness assumption.
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