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We present here the statistical models that are most in use in survival data analysis. 
The parametric ones are based on explicit distributions, depending only on real unknown 
parameters, while the preferred models are semi-parametric, like Cox model, which imply 
unknown functions to be estimated. Now, as big data sets are available, two types of 
methods are needed to deal with the resulting curse of dimensionality including non 
informative factors which spoil the informative part relative to the target: on one hand, 
methods that reduce the dimension while maximizing the information left in the reduced 
data, and then applying classical stochastic models; on the other hand algorithms that 
apply directly to big data, i.e. artificial intelligence (AI or machine learning). Actually, 
those algorithms have a probabilistic interpretation. We present here several of the former 
methods. As for the latter methods, which comprise neural networks, support vector 
machines, random forests and more (see second edition, January 2017 of Hastie, Tibshirani 
et al. (2005) [1]), we present the neural networks approach. Neural networks are known to 
be efficient for prediction on big data. As we analyzed, using a classical stochastic model, 
risk factors for Alzheimer on a data set of around 5000 patients and p = 17 factors, we 
were interested in comparing its prediction performance with the one of a neural network 
on this relatively small sample size data.

© 2019 Published by Elsevier Masson SAS on behalf of Académie des sciences. This is an 
open access article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

When analyzing the risk of an event E to occur, such as a degradation, a failure, a disease or even death, one may 
consider how the waiting time Y of onset of such a nocuous event is influenced by intrinsic and environmental factors 
X := (X1, .., Xp):

Y = f (X) (1)

The function f is not deterministic. In classical survival data analysis, a stochastic model for f is chosen among several 
families of models, fully parametric, nonparametric or semi-parametric [2,3]. Then, f is to be estimated, based on the 
chosen model and from the observation of a training set, i.e. a sample of n observations, (X, Y )i i = 1, · · · , n, of the pair 
(X , Y ). Finally, the stochastic model initially chosen has to be tested for fit; see E. J. Lehmann [4], and [5]. The classical 
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versions of these models are available in R software. To adapt the analysis to specific situations, researchers have to elaborate 
extensions of these models and work them out using R, which is both a software and a programming language; see [6,7]. As 
a counterpart, the machine learning approach of this same problem consists in using an algorithm which has the potential 
risk factors X as entries and Y as output. Several families of algorithms are available: neural networks, random forests or 
support vector machines [1,8]. This second approach leads to the so-called “data driven models”. In that respect, it seems to 
be more satisfactory than the subjective choice of a stochastic model that appears in the first approach. However, machine 
learning is often viewed as a “black box” as the algorithm goes back and forth until convergence is achieved, and it scatters 
thus the initial potential risk factors in such way that interpretation becomes difficult. Also, every machine learning method, 
even though it seems to be purely algorithmic, has a probabilistic interpretation. We shall see this feature in particular for 
neural networks, which are a parametric version of a stochastic model: the projection pursuit regression and discrimination 
model. Several recurrent problems occur when dealing with duration data.

(i) Incomplete data occur very frequently. For some subjects or items, the event does not occur before the end of the 
study, leading to missing data that are called “censored” data. More precisely, they are called “right censored data” as 
other phenomenons may occur like left censoring or interval censoring [9]. Right censoring means that the true value 
of Y is unknown but known to be “to the right” of the observed duration. Those incomplete data are not to be thrown 
away. They are taken into account using special devices.

(ii) Specially in medicine, it may happen that the training sample is small. If the sample size is small, it does not help in 
drawing conclusions. This happens with prospective studies. The simplest example of this case is a clinical trial: only 
one risk factor, the treatment. It compares a new treatment X = 1 to the usual one X = 0 to increase the life length 
of patients suffering from a specific disease. For ethical reasons, the sample size n is rather small and the patients 
are carefully chosen as the characteristics of the two groups should be comparable except for the treatment. This is 
achieved either by randomization (a double blind study, an experimental procedure in which neither the subjects nor 
the experimenters know which subjects are in the test and control groups), or pairing on possibly relevant factors 
[10] in order to ensure the comparability of the two sub-samples except for the treatment. For ethical reasons, the 
size of such samples is necessarily rather small. We should notice that a perfect comparability is achieved in the 
randomization case only asymptotically, and in the pairing case only if the set of matched factors is correctly chosen. 
In order to work with an increased sample size, one may use bootstrap techniques [11], which consist in drawing at 
random new samples out of the unique sample we have. Several theorems are needed to justify, in each specific case, 
the use of such duplications of a unique sample; see P. Hall [12].

(iii) But when the training set is not carefully collected on purpose like in the preceding example, one has to deal frequently 
with immense data bases, even in the medical field. Sample size n and/or number of factors p may be very big. 
It happens when the data are obtained retrospectively, for example from an Internet national or international data 
base. In France, big data sets of patients, with extensive information, are available from the national health insurance. 
Depending on the goal aimed at, there is a need to extract the useful information, reducing thus the high dimensionality 
of the data.

The next section, section 2, deals with several types of stochastic survival models. Section 3 gives an illustration of the 
difficulty of model selection. In section 4, we present some data reduction methods for the high dimensionality of data sets 
and in section 5 we define neural networks as a parametric version of a stochastic model: projection pursuit regression 
and discrimination. Finally, in section 6, we give an example of comparison of a stochastic model and a neural network to 
predict Alzheimer occurrence among patients at Pitié-Salpêtrière Hospital in Paris (France).

2. Stochastic survival models

The probability distribution of the waiting time Y may be defined by anyone of five different equivalent functions: its 
survival function S(t) := P (Y ≥ t), its distribution function F (t) := P (Y < t), its density f (t) := F ′(t) := −S ′(t) (whenever 
it is assumed to exist, which is mostly the case), its hazard function h(t) := f (t)/S(t) and, finally, its integrated hazard 
H(t) := ∫ t

0 h(s) ds.
The relationships between them are{

S(t) =1 − F (t) = exp(−H(t))

h(t) = H ′(t) ; H(t) = − ln(S(t))
(2)

Most current models are based on the hazard rate h, the probability that the event takes place at time t , knowing that it 
did not take place before:⎧⎨⎩ h(t) = f (t)

S(t)

f (t) =−S ′(t)
(3)
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Fig. 1. Weibull hazards for diverse values of α (shape), λ (scale).

2.1. Parametric survival models

(i) Weibull and generalized Weibull [13].
(a) Weibull model.

One of the most usual simple parametric model is due to Weibull. It has two positive real parameters λ and α, to 
be estimated from a training set. Weibull model W (λ, α) is defined as

h(t|λ,α) = αλαtα−1 ; (λ,α > 0) ; t ≥ 0 (4)
α = 1 h is constant h = λ (no ageing, ≡ exponential model E(λ) as S(t) = exp(−λt))
0 < α < 1 h is decreasing ∞ ↓ 0 (see Fig. 1 left)
α > 1 h is increasing 0 ↑ ∞ (see Fig. 1 right)

As will be seen below, h is assumed to be a function of p real risk factors X j named covariates in medicine and 
stresses in industrial setting.

(b) Generalized Weibull GW (λ, α, γ ).
It has a third parameter γ and reads

h(t|λ,α,γ ) = λα

γ
(λt)α−1{1 + (λt)α}1/γ −1; (λ,α,γ > 0); t ≥ 0 (5)

GW allows multiple hazard shapes; see Fig. 2

GW (λ,1,1) = E(λ), exponential
GW (λ,α,1) = W (λ,α), Weibull
If α > 1,α > γ , h : 0 ↑ ∞
If α = 1, γ < 1, h : λ

γ ↑ ∞
If 0 < α < 1,α < γ , h : ∞ ↓ 0
If 0 < α < 1,α = γ , h : ∞ ↓ λ

(c) Exponentiated Weibull EW (λ, α, γ ).
Exponentiated Weibull hazard [14,15] reads

h(t|λ,α,γ ) = λα{1 − exp[−(λt)α]}(1−γ )/γ exp[−(λt)α](λt)α−1

γ {1 − (1 − exp[−(λt)α])}1/γ
, (λ,α,γ > 0), t ≥ 0 (6)

All moments of EW are finite. Sub-models are E W (λ, α, 1) = W (λ, α) and EW (λ, 1, 1) = E(λ).
For α > 1, α ≥ γ , the hazard h increases from 0 to ∞.
For α = 1, γ ≤ 1, the hazard h increases from ( λ

γ ) to ∞.
For 0 < α < 1, α < γ , the hazard h decreases from ∞ to 0.
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Fig. 2. Generalized Weibull hazards for diverse values of the parameters.

For 0 < α < 1, α = γ , the hazard h decreases from λ to 0.
(ii) General parametric models.

The waiting time Y is defined through a link function g and a random variable Z :

g(Y ) = βᵀ x + σ Z (7)

where x are the risk factors, β the parameters to be estimated, g identity or log, and density f of Z may be⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
logistic : f (z) = e−z

(1 + e−z)2

normal : f (z) = 1√
2π

e− z2
2

extreme : f (z) = ez−ez

(8)
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As an example, let us see how Weibull is represented in this setting: if Y is Weibull W (λ, α), g = log and Z ∼ E(1), 
exponential(1) so that

log(Y ) = β0 + βᵀx + σ log(Z) = − log(λ) + 1

α
log(Z) (9)

In terms of W (λ, α) (4): λ = e−(β0+βᵀx) , α = 1/σ .
(iii) Estimation method: Maximum Likelihood (ML).

What is known is the observed training set (yi, xi)i=1,··· ,n , and a stochastic model P = L(Y |X), the probability distri-
bution of Y knowing X , implying unknown parameters to be estimated from the training set.
The unknown parameters are
– p parameters: β = β1, · · · , βp quantifying the weight of each risk factor X j, j = 1, · · · , p,
– the baseline hazard function h0(t) the probability, having “survived” up to time t , to have the event at time t when 

no risk factors is present. If h0 is assumed to be a given function of k parameters, like a Weibull depending on k = 2
parameters, we have, in all, p + 2 parameters to estimate.

The values chosen for the parameters are those that maximize the probability of the observed training set, called Max-
imum Likelihood (ML) estimators. It should be mentioned that one has to be careful when using maximum likelihood 
looking at the ratio of the number of parameters to estimate as compared to the size of the training sample which 
should not exceed some value [16].
As the likelihood of one observation, L(α, λ, β|y, x1, x2, · · · , xp) is equal to f (y, α, λ, β, x), and all observa-
tions are assumed to be independent, the likelihood of the observed training set is equal to the product L =∏n

i=1 L(α, λ, β|yi, xi) =∏n
i=1 f (yi, α, λ, β, xi).

Now, find the values of α, λ, β that maximize the likelihood L:

α̂, λ̂, β̂ = argmax
α,λ,β

L(α,λ,β|y,x) (10)

Actually as it is easier to find the derivative of a sum than of a product, in order to maximize an expression, one deals 
with the log of the likelihood (named log-likelihood) rather than the likelihood itself.

(iv) Now, how to deal with right censored data?
Due to the nature of the data, it may happen that Y is not observed when the experiment stops at time C before 
the event takes place. One can then provide the fact that what is known is that Y > C and replace in the likelihood, 
the density f at the unknown time Y by the survival S at the known time C . Other types of censoring may occur 
besides right censoring: left censoring, when the duration is known to be bigger than some observed duration C , 
interval censoring, when the duration is known to lie between two observed values, C1 and C2. Moreover, what may 
also happen is truncation: some items or patients may be skipped from the observed sample due to the experimental 
scheme. In that case, some special procedures have to be applied [17–19].

2.2. Semi-parametric survival models

Semi-parametric models have a non-parametric part (an “infinite-dimensional” unknown parameter: e.g., one or several 
functions) and a parametric one (a finite dimensional unknown real parameter), both to be estimated through a training 
set, but focusing on the parametric part, for the sake of interpretation.

(i) Cox model [20–22].
The hazard rate h is assumed to be equal to a baseline hazard h0(t) (the nonparametric part of the model), modified by 
p covariates X = (X1, · · · , Xp) whose weights are the parameters β = (β1, · · · , βp) (the parametric part of the model) 
to be estimated, as well as h0 which may be any positive function:

h(t|X) = h0(t) e βᵀ X (11)

Usually, one is only interested in β and the objective is to get rid of the nuisance infinite dimensional parameter h0. 
This can be done using Cox’s partial likelihood (see below). Once the respective weights of the risk factors have been 
estimated, one can derive an estimation of the function h0.

(ii) Estimation method.
In this semi-parametric case, the baseline h0 is free to be any function. The likelihood is then replaced by Cox’s partial 
likelihood: at each failure time yi , consider the ratio of the item that fails to all items still present at risk. Those at 
risk are those who are neither failed nor censored at time yi . This eliminates h0, as it has the same value, h0(yi) for 
everyone, and takes advantage of all items that will be censored later on, in the denominators. Then, once we have 
estimated the coefficients β of the risk factors, we can estimate h0.
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(iii) Frailty models.
Up to now, the observed population is assumed to be homogeneous and all items (or patients) are independent. In 
order to model a possible inhomogeneity, one can introduce into the model a random effect η, called frailty [23–25], 
acting multiplicatively on the hazard rate h(t|x) of an individual with covariate vector x.

h(t|x, η) = η exp(βᵀx) h0(t) (12)

A frailty model may be considered as a Cox model with an unobserved covariate ln(η) whose coefficient is equal to 
1 and whose distribution function is known, derived from Fη the distribution of η. Flexible distributions are usually 
chosen for Fη , the most common being gamma, but also inverse gaussian and all stable distributions, leading to the 
model

S(t|x, η) = exp(−η exp(βᵀx)H0(t)) (13)

where H0(t) is the baseline cumulative hazard. Thus, as η is not observed, what is available is the survival integrated 
with respect to η:

S(t|x) =
∞∫

0

exp(−u exp(βᵀx)H0(t))dFη(u)

= exp(−G(exp(βᵀx)H0(t)))

(14)

where G is -log of the Laplace transform of η distribution function

G(y) = − ln(

∞∫
0

exp(−uy)dFη(u) (15)

The simple Cox model is obtained when G is the identity.

2.3. Nonparametric survival models

In industrial setting, accelerated failure time models (AFT) [26,27] are more popular than Cox model and covariates 
are called stresses which are often controlled while the covariates are simply observed: for G a survival function, i.e. a 
decreasing function from 1 to 0 on R+ , and r a positive function on a p-dimensional process X

S(t|X(s),0 ≤ s ≤ t) = G(

t∫
0

r(X(s))ds) ∀X ∈ X (16)

We can see there a totally nonparametric model, involving two unknown functions, G and r. It has a semi-parametric 
version when one of the two unknown functions involved, G or r, is replaced by a function depending on a finite number 
of parameters; and a fully parametric version if both functions are assumed to be known except for one or more real 
parameters to be estimated. Those replacements should be done with flexible functions able to adopt different shapes. 
Other examples of nonparametric models may be found in [28,29].

Let us remark that parametric models may seem to be too coercive as compared to nonparametric ones. One way 
to remedy this possible defect is to replace the distribution function of a parametric model by a neighborhood defined 
through a distance on probability distributions like Hellinger or Prokhorov distance. This leads to a fourth type of model, 
called robust models [30,31].

2.4. Latent variable model: first hitting time

Health L(t) of a patient, or operational state L(t) of a technological material is a latent (not observed) variable that 
decreases to 0 due to three types of risk factors. The event occurs when this process reaches a boundary, usually 0 [32,33]. 
In order to make clear the structure of this model, let us give a motivating medical example:
One has to estimate the expected years of life free of lung cancer lost due to occupational exposure to asbestos. Such a 
study was required based on a French case-control survey [34]. The model is as follows:

L(t|h,μ) = � + μt + B(t) (17)

where
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(i) � > 0, the initial amount of health, is a function of the initial covariates X I : gender, past family disease history, genetic 
factors, ... (Note that in our example, the amount of health is meant with respect to lung cancer occurrence, not with 
respect to death itself.)

(ii) μ < 0, the slope of the process, is a function of X I and also of lifetime covariates X L : smoking and food habits, 
environment, biological measurements (glycemia, cholesterol, · · · ).

(iii) B(t) is a Brownian motion, the random part of the model.
(iv) Finally, the focus is put on a special risk factor X S (here occupational exposure to asbestos), which accelerates by a 

function r(t) the time to onset of lung cancer.

The initial amount, �, will depend on xI , the slope, μ, on xI and xL . Usually this dependence is assumed to be linear, which 
results in a parametric model, with the weights of each risk factor to be determined for � and for μ. Now, given the values 
of xI and xL of a patient, one can compute the years free of disease that he lost due to his exposure to asbestos by using 
the acceleration function r, estimated from the training set. In the absence of any asbestos exposure the waiting time to the 
event (lung cancer occurrence) is

T (�,μ) = inf{t ≥ 0 : L(t|�,μ) ≤ 0} (18)

T (�, μ) (< ∞ as μ < 0) is inverse Gaussian (	(t) = ∫ t
−∞

1√
2π

exp(−u2/2) is the standard normal cdf (cumulative distribu-

tion function)):

F (t|�,μ) = 1 + e−2�μ	
(
(μt − �)t−1/2

)
− 	
(
(μt + �)t−1/2

)
(19)

In the presence of asbestos exposure, the time to event is accelerated by a nondecreasing continuous function r on IR+ such 
that r(t) ≥ t ∀t:

T (�,μ, r) = inf{t ≥ 0 : L(r(t)|�,μ) ≤ 0} (20)

This parametric model has a nonparametric version [35].

3. Illustration of the difficulty of model selection

Model selection is a difficult problem. The following artificial example is an illustration of the difficulty of eliminating 
irrelevant predictors. It shows that removing potential risk factors which seem to be independent of the outcome may lead 
to serious errors.

Let us consider a very simple diagnosis problem, discrimination between 2 diseases M = M1 or M = M2 based on 3 
symptoms X j, j = 1, 2, 3, meeting the following distribution:

M = M1
X1 = 0 X1 = 1

�������X2

X3 0 1

0 1/4 0
1 0 1/4

�������X2

X3 0 1

0 0 1/4
1 1/4 0

M = M2

�������X2

X3 0 1

0 0 1/4
1 1/4 0

�������X2

X3 0 1

0 1/4 0
1 0 1/4

(i) All 3 symptoms are present with the same probability 1/2 in M1 and in M2. This implies that all 3 symptoms seem to 
be independent of the type of the disease, M1 or M2.

(ii) For any pair of symptoms x j , xk , P (M1|x j xk) = P (M2|x j xk) = 1/4, so that every pair (X j, X j′ ) is uniform on its 4 values 
in M1 as well as in M2. As a result, none of the 3 pairs (X j, X j′ ) can discriminate M1 and M2.

(iii) But for any triplet of symptoms (x1, x2, x3), whenever P (M1|x1, x2, x3) = 1, P (M2|x1, x2, x3) = 0 and the reverse is also 
true. This implies that (X1, X2, X3) altogether discriminate perfectly M1 and M2 and lead to a perfect diagnosis of M .

This phenomenon can be extended to any k-uple of risk factors, so that one has to take into account the maximum possible 
size of sets of risk factors allowed by the number of observed items as compared to the number of risk factors.
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4. Reduction methods

Among existing methods (POD, PGD and others [36]), let us cite PGD (Proper Generalized Decomposition method) of 
Chinesta, Ladevèze et al. [37,38]:

f (x1, .., xp) 
q∑

i=1

(

p∏
j=1

f j
i (x j)) (21)

and the classical Singular Value Decomposition (SVD) of a matrix An×p , which is useful when the data is a high dimensional 
(rectangular) (n × p) matrix A. It replaces A by a product of three matrices, the inner one being diagonal with dimension 
r, the rank of A, smaller than min(n, p). It can be seen as a Principal Component Analysis of the matrix An×p , which 
replaces the explanatory variables X for the outcome Y by a few linear combinations of them, giving thus a probabilistic 
interpretation of SVD. Finally, I will cite a decomposition of a function f (x1, .., xp) of several discrete variables, based on 
variance analysis, that is useful for sparse contingency tables. For an overview of existing methods, see [39].

4.1. Singular value decomposition (SVD)

A : Rp →Rn rank(A) = r ≤ min(n, p) :

An×p =

⎡⎢⎢⎣
x11 x12 ............... x1p

x21 x22 ............... x2p

... ... ............... ...

xn1 xn2 ............... xnp

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ n : n � p, a centered matrix

︸ ︷︷ ︸
p

Find U , V , D such that:

A = U D V ᵀ or UᵀAV = D (22)

where⎧⎪⎨⎪⎩
U n×r orthonormal basis of Er �Rn column space of A

V p×r orthonormal basis of E ′
r �Rp row space of A

Dr×r diagonal matrix (d1, · · · ,dr) ; r = rank(A)

(23)

Let us remark that U and V have left inverses:

V T
r×p V p×r = U T

r×nU n×r = I r×r (24)

In order to obtain U , V , D verifying Eqs. (22), we proceed as follows:
As UᵀU = I r×r , AᵀA = V D2 V ᵀ and, as V ᵀV = I r×r , A Aᵀ = U D2Uᵀ . Aᵀ A, the Gram matrix associated with A, and A Aᵀ
are semi-definite positive matrices, so that the columns of V are the real eigenvectors of Aᵀ A and the columns of U are 
the real eigenvectors of A Aᵀ and d2

1, · · · , d2
r are the common positive eigenvalues of AᵀA and A Aᵀ . As a consequence, the 

singular value decomposition of A is U D V ᵀ .

4.2. Statistical approach to SVD: principal component analysis (PCA)

X1 X2 ....... ...... Xp

An×p =

⎡⎢⎢⎣
x11 x12 ............... x1p

x21 x22 ............... x2p

... ... ............... ...

xn1 xn2 ............... xnp

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ n : n � p, a centered matrix

︸ ︷︷ ︸
p

A represents n observations (on n patients or n technological devices) of the p-dimensional variable (covariate or stress) 
X = (X1, · · · , Xp), and it is considered as a cloud of n points in Rp or p points in Rn . The goal is to find the best 
representation of the cloud in a space of smaller dimension, while keeping most of the initial information. This suggests to 
maximize the variance of linear combinations of the vectors X j , which is obtained by projection on the first k eigenvectors 
of the symmetric semi-definite positive matrix Aᵀ A. This matrix is an estimator of 
, the unknown covariance matrix of X . 
This can be seen from the following equations:
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Let W be any linear combination of the X ′
j s, W = a1 X1 + · · · + ap Xp . It has a representation in terms of the eigenvectors, 

W = b1 V 1 + · · · + br Vr , so that ̂V ar(W ) = a AT ATa = b2
1λ1 + · · · + b2

r λr , where 
∑r

j=1 b2
j = 1.

We can see from those equations that the “most informative k-dimensional subspace” in Rp is the space spanned by 
(V 1, · · · , Vk), the first k eigenvectors of AᵀA.

4.3. Decomposition of a function of several random variables

Let f be a real function of p real random variables. We have the following decomposition lemma based on the classical 
variance analysis:
Every integrable function f = f (x1, · · · , xp) may be decomposed uniquely into a sum:

f = C +
p∑

j=1

g j(x j) +
∑

j,k∈{1,··· ,p}2, j<k

g jk(x j, xk) + .. + g1,..,p(x1, .., xp) (25)

where C is a constant and all expectations of g functions on any of their arguments are 0.
This result will be essentially applied in the following case: the variables X j are discrete and take a finite number of 

values. The expectations are taken with respect to the joint probability of X = (X1, ·, Xp).
Constructive decomposition

C = E( f (X1, .., Xp))

g j(x j) = E( f (X1, .., Xp)|X j = x j) − C
g j,k(x j, xk) = E( f (X1, .., Xp)|(X j, Xk) = (x j, xk)) − g j(x j) − gk(xk) − C
etc. . . .

This approach is very useful for sparse contingency tables as can be seen from the following diagnosis example, where the 
data leave many symptom profiles empty. We have p = 9 binary symptoms X j, j = 1, · · · , p, X j = 1 if the symptom is 
present, which gives p′ = 29 = 512 symptom profiles, which are supposed to discriminate two different forms, M1 and M2, 
of the same disease M .

Observations on n = 150 patients give counts for 1024 cells, so that many cells are empty in the observed sample, though 
their probabilities may not be assumed to be equal to 0.

A2×512 =
[

n11 n12 ............... n1p′
n21 n22 ............... n2p′

]}
q = 2︸ ︷︷ ︸

p′=512

log(P (X = x|M1)) = C +∑p
j=1 g j(x j) +∑ j �= j′, j< j′ g j, j′(x j, x j′)

+ ∑
j �= j′ �=k, j< j′<k g j, j′,k(x j, x j′ , xk) + · · · + g1,2,··· , p(x1, x2, · · · , xp)

We have two such developments, one for disease M1, and one for disease M2, with sums of functions of an increasing 
number, k, of variables. If we can assume that the symptoms are independent, which is very simple but often unrealistic, 
we can stop the preceding developments at k = 1. If we stop at k = 2, it means that we assume a possible dependence 
of order 2, but with no influence of any third symptom on the link between any two given symptoms. Now, stopping at 
k, named assumption Hk , i.e. cutting off all functions of more than k arguments, means that we allow possible order k
interactions, but no interaction greater than k. Under assumption Hk , the marginals of order k of the data are sufficient 
statistics [40].

5. Neural networks

The most usual Neural Network, the single hidden layer back-propagation network (or single layer perceptron), is a 
particular case of a stochastic model, the Projection Pursuit Regression and Discrimination (PPRD) model.

5.1. Projection pursuit regression and discrimination model (PPRD)

This semi-parametric model is fit for regression as well as discrimination problems.

(i) Regression.
The target Y ∈R is the response variable to X = (X1, · · · , Xp) ∈Rp . The PPR Ŷ of Y is defined as:

Ŷ = f̂ (X) :=
M∑

ĝm(ω̂ᵀ
m X) :=

M∑
ĝm(Vm) (26)
m=1 m=1
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in which ωm, m = 1, · · · , M are M unitary p-dimensional vectors and functions gm : R →R. Function gm(Vm) is called 
a ridge function. The estimators are based on the observed training sample: (xi, yi), i = 1, · · · , n. This is an additive 
model, but not with respect to the initial variables X but with respect to appropriate linear combinations of them: 
Vm = ωᵀ

m X .
A remarkable property of this model is that if we choose M big enough, any continuous function may be approximated 
arbitrarily well. This is what made the success of neural networks which are a parametric version of this stochastic 
model. A simple example of the nonlinearity of the model may be given in the simplest case where p = M = 2, 
ω1 = (1/

√
2, 1/

√
2), ω2 = (1/

√
2, −1/

√
2), g1(t) = t2/4, g2(t) = −t2/4, so that the resulting value of f is f (X) = X1 X2. 

However, a drawback of this model is the difficulty of interpretation of the results in terms of the initial risk factors as 
each feature X j is scattered into every linear combination of X . The quadratic measurement error is:

R(θ) :=
n∑

i=1

[yi −
M∑

m=1

gm(ωᵀ
mxi)]2 (27)

where θ is the set of parameters of the problem (θ := (ωm, gm)).
(ii) Discrimination into K categories.

Up to now we considered the case of a regression problem, Y being a random variable in R. If the problem is a 
discrimination one, the target Y = (Y1, · · · , Y K ) is one of K categories, each Yk being coded as a (0,1) variable. In that 
case, two different error measurements are considered:

R2(θ) := ∑K
k=1
∑n

i=1(yik − fk(xi))
2 quadratic error

R K L(θ) := − ∑n
i=1
∑K

k=1 yik log( fk(xi)) crossed entropy

The index K L for the crossed entropy makes reference to Kullback Leibler distance which is equal up to an additive 
constant to crossed entropy as defined up there. We recall that the Kullback–Leibler distance of two probabilities P and 
Q is defined as

K L(P , Q ) =
∫

log(
dP

dQ
) dP

5.1.1. Neural network as a special case of PPRD
Let the framework be a discrimination problem: the target Y is a category, each Yk being coded as a (0,1) variable. Yk

is modeled as a function gk of a linear combination of variables obtained by a linear combination of activated M linear 
combinations of the inputs.

We can see that linearity comes in twice in this definition, with p × M coefficients α and p × K coefficients β . To those 
parameters are added the activation function σ and the K functions gk:

Vm := ωᵀ
m X := α0 + αᵀ

m X m = 1, 2, · · · , M
Zm = σ(Vm) σ is the activation function
Tk = β0k + β

ᵀ
k Z k = 1, 2, · · · , K

fk(X) = gk(T ), k = 1, 2, · · · , K

where gk(t) = eTk∑K
i=1 eT i

. This choice ensures that all Ŷk := fk(X) are positive and add to 1.

There are several possible choices for the activation function σ , see Fig. 3. All of them are smoothed versions of the step 
function s(u) = 1 {u ≥ 0} (up to an additive constant). The nonlinearity of the model is due to the activation function. If σ
is the identity, the model becomes linear.

σ(u) = 1

1 + e−u
the sigmoïd, the most usual one

σ(u) = eu − e−u

eu + e−u
hyperbolic tangent (th(u))

σ(a, u) =
{

a(eu − 1) for u < 0

u for u ≥ 0 Exponential Linear Unit (ELU)

σ(a, u) =
{

au for u < 0

u for u ≥ 0 Rectified Linear Unit (ReLU)

σ(a,b, u) = b

{
a(eu − 1) for u < 0

u for u ≥ 0 Scaled Exponential Linear Unit (SELU)
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Fig. 3. Several activation functions.

Table 1
Comparison of prediction abilities of GLM and NN.

Method pd pnd pg C I95%(pd) C I95%(pnd)

GLM 0.72 0.73 0.73 0.55 0.85 0.70 0.76
NN(2) 0.68 0.73 0.73 0.50 0.85 0.65 0.77

6. Application to Alzheimer prediction

We analyze the comparison of prediction abilities of a stochastic model, the logistic regression (GLM), and a neural 
network (NN) approach, for the prediction for patient to develop Alzheimer in the next 4 years, based on the observation 
of 17 risk factors. The data set is issued from Pitié-Salpêtrière Hospital in Paris (France). It has n = 5003 patients each with 
p = 17 covariates, including 3 genetic factors, familial disease anteriority and personal factors (age, sex, education level...). 
467 patients were excluded for missing values, 142 developed the disease and 4214 were free of disease, and thus called 
controls [41]. Let us notice that this is a very simple problem, which deals only with a discrimination problem between two 
outcomes (Alzheimer or not) and a data set which is not big at all as it involves only a (5003 × 17) matrix. Note also the 
very unbalanced counts for diseased (142) and controls (4214) which makes the discrimination uneasy for both methods. 
The logistic model reads

P (Y = 1|X = x) = exp(βᵀx)

1 + exp(βᵀx)
(28)

We proceed as follows.

(i) Split at random 3/4 of the data set to be the training set. This is a rather huge training set due to the paucity of 
patients who developed the disease.

(ii) The remnant 1/4 will be the test set on which to predict who will be Alzheimer.
(iii) Use separately logistic model (GLM) and neural network (NN) on the training set to estimate the probabilities RGLM(X)

and R N N(X) to develop Alzheimer based on the risk factors X .
(iv) Predict, on the test set, who will be Alzheimer based on the estimations done with both methods. The result is four 

counts for each method: true positive, false positive, true negative, false negative. Or, equivalently, the probabilities of 
correct classifications of Alzheimer (pd) and non-Alzheimer (pnd).

(v) Repeat this process N times, for both methods, to obtain confidence intervals for the probabilities of correct prediction 
of Alzheimer, see Table 1.

Average correct predictions due to GLM and NN are pd for dementia cases, pnd for people without dementia, pg for global 
and C I95% are the respective confidence intervals.

Hereafter is an illustration, see Fig. 4, of the neural network we used, with 2 layers, the first one with 3 neurons and the 
second one with 2 neurons. In order to have a more readable picture, we choose to show as entries only the four relevant 
predictive factors: age, incapacity, depression and the gene APOE4, a reduced number (only 4) as compared to the initial 17 
entries.
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Fig. 4. 2 layers, 3 and 2 neurons.

Table 2
Correct predictions due to GLM and NN for dementia cases (pd), 
for people without dementia (pnd), global pg, and 95% confidence 
intervals after duplication.

Method pd pnd pg C I95%(pd) C I95%(pnd)

GLM 0.73 0.73 0.73 0.71 0.76 0.71 0.75
NN(2) 0.75 0.72 0.73 0.73 0.78 0.70 0.75

Some comments

(i) It was very surprising that the education level did not play a role in the occurrence of the disease.
(ii) The fact that the counts are very much unbalanced (142 dementia cases versus more than 4000 without dementia) 

creates problems for the prediction: the confidence intervals are large.
(iii) To overcome this problem, one can duplicate the smaller category [42], see Table 2.

After duplication, the widths of the 95% confidence intervals are reduced [0.71 0.76] instead of [0.50 0.85] for the 
future Alzheimer detection and [0.70 0.75] instead of [0.65 0.77] for the future non-Alzheimer.

(iv) The prediction abilities of the two methods are very comparable on this example, with moderate dimension of the data 
set.

(v) Increasing the number of neurons from 2 to 3 in a unique hidden layer does not improve the prediction ability. The only 
consequence is increasing the time to get the result. Same comment when using two layers with respective number of 
neurons 3 and 2.

As a perspective, one could use world wide data (Big Data) related to Alzheimer disease and the observed risk factors on 
the patients under survey. Then this would become a regression problem, estimating the time to onset of the disease as a 
function of the numerous available risk factors.

7. Conclusions and perspectives

(i) Analysis of risk is a crucial issue nowadays. The same mathematical methods to evaluate the impact of risk factors on 
the waiting time for an event to occur may be applied to technological aging systems [43], to public health problems 
[44], insurance, management [45], ecology and other fields.

(ii) The link between survival analysis and reliability, ignored for a long time, so that the terminology is different in both 
fields to name the same concepts, is now fully acknowledged. Only recently, their common points, more numerous than 
their differences, were recognized. The favorite model though for survival data is the Cox model and its extensions, 
while accelerated models are preferred in an industrial environment [26,27].

(iii) The increasing power of computers facilitates the development of non parametric and semi-parametric stochastic mod-
els, more greedy in time computation than the parametric ones, and also of complex algorithms in Artificial Intelligence 
to deal with Big Data. Many new packages appear every month in R and Python which are available on the web.

(iv) Statistical Learning and Big Data (SLBD):
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Research statisticians turn now to Machine Learning, like Hastie, Tibshirani et al. [1] and the reverse is also true. 
Machine learning researchers like Murphy [46] investigate the probability background of their manipulation of Big Data 
through algorithms. This forms finally what could be called Statistical Learning and Big Data.

(v) The increasing knowledge of the genome [47] provides high dimensional data [47]. The FHT (First Hitting Time) model, 
in use in this context, gives a special status to some risk factor.

(vi) Specific developments in medicine:
“Individualized medicine”, which seems to be in total contradiction with classical statistical analysis is now seriously 
taken into account. Including all the data relative to a patient, such as medical doctors report (text data) leads to the 
development of new graphical models.
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