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We consider survival data that are both interval censored and truncated. Under appropriate
assumptions on the involved distributions, the censoring, truncation and survival, we prove
the consistency of the NPMLE of the density of the survival, and give the rate of conver-
gence. Finally, we give an example where the joint law of the censoring and truncation can be
explicitly computed.
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1. Introduction

Survival data are often both interval censored and truncated, as observation of the process is not continuous in time and is
done through a window of time which could exclude totally some individuals from the sample. For example, the time to onset of
a disease in a patient, like AIDS from HIV infection or toxicity of a treatment, is not exactly known, but it is usually known to have
taken place between two dates t1 and t2; this occurs in particular when the event of interest results in an irreversible change of
state of the individual: at time t1, the individual is in state one, while at time t2, he is in state two. Moreover, some people can
escape the sample if they are observed during a period of time not including some pair of dates t1, t2 having the above property.
Such data, censored and truncated were at first introduced by Turnbull (1976), and further studied by several authors such as
Finkelstein et al. (1993), Frydman (1994), Huber et al. (2005). NPML estimators of the cumulative hazard together with finite
dimensional parameters associated to covariates are obtained in Alioum and Commenges (1996) for the Cox model and in Huber
and Vonta (2004) for a generalization of the Cox model: a frailty model or transformation model, but without any consistency
result. We give here conditions on the involved distributions, the censoring, truncation and survival distributions, all three of
them assumed mutually independent, under which the consistency of the nonparametric maximum likelihood estimator of the
density of the survival is established together with the rate of convergence.

The proofs use results of Stein (1993), Wong and Shen (1995) and van der Vaart and Wellner (1998, 2000) on nonparametric
estimation.

In Section 2, we give a representation of the censoring and truncationmechanisms. As it is due to a noncontinuous observation
of the survival process, the censoring mechanism is represented as a denumerable partition of the total interval of observation
time (a, b). Then a truncation is added to the censoring, conditioning the observations both of the survival and the censoring
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processes. Without restriction of the generality, we consider the special case of right truncation. In the next three sections, third,
fourth and fifth, three distributions are successively studied, each one being conditional on fixed values which become random
in the next section, leading finally to the joint law of censoring and truncation.

More specifically, in Section 3, the distribution associated with a random covering, which is a censoring set conditional on
a fixed value x of the survival process, is considered. It is the sum of a denumerable number of elementary probabilities, and is
proved to have a density with respect to a baseline probability.

In Section 4, we define the joint distribution of a pair of intervals, a censoring (L(x),R(x)) and a truncating one (L(z),R(z)),
conditional on fixed values x and z, respectively, of the survival X and the right truncation Z.

In Section 5, we consider the distribution of the incomplete observation of X, that is, (L(X),R(X), L(z),R(z)), conditional on the
truncating variable Z = z.

In Section 6, we give assumptions on the setF of densities f of Xwhich allow us to derive consistency of the NPMLE estimator
of f along with the convergence rate.

In the last section we provide an example where the joint law of the censoring and truncation can be explicitly computed,
and which satisfies the conditions to get consistency and convergence rate of the NPMLE of the density f of the survival.

2. Partitioning the total observation time

2.1. Random covering

Let � be a random partition defined on (a; b), where usually a will be equal to 0 and b is either +∞ or a finite strictly positive
number:

� =
⎧⎨⎩Y0 = a < Y1 < · · · <YK < YK+1 = b,

K⋃
j=0

(Yj,Yj+1] = (a, b]

⎫⎬⎭ , (1)

where K is a random number in {2, . . . ,K0} for some given K0 such that 2 <K0 <∞.
For each x ∈ (a; b) we define

k = k(x) = inf{j : x�Yj+1}, (2)

�(x) = (Yk(x),Yk(x)+1] := (L(x),R(x)], x ∈ (a, b). (3)

where L(x) and R(x) may be thought of as the left and right values in partition � that “bracket” (the survival) X = x.
Then it is clear that

�(x) = �(y) or �(x) ∩ �(y) = ∅ (4)

and we call �(x) a simple random covering of (a, b).

2.2. Short-cut covering

Let �(x) = (L(x),R(x)], x ∈ R, be a simple random covering and � the partition associated with �(x). Then, we consider a fixed
interval � = (z1, z2], and z the associated vector (z1, z2), z1�z2, which will play the role of truncating interval.

For a fixed value of � = t,

t = {yj, j = 1, 2, . . . , s},

and for each � = (z1, z2] such that z2 < ys, define functions

�1 = �1(t, z1) = inf{k : yk�z1}, z1 = z1(t, z1) = Y�1 := R(z1),

�2 = �2(t, z2) = sup{k : yk�z2}, z2 = z2(t, z2) = Y�2 := L(z2).

The short-cut covering ��(x) = (L�(x),R�(x)], x ∈ �, is defined as follows:

��(x) = (z1, z2] if R(z1) > L(z2),

else

(L�(x),R�(x)] =

⎧⎪⎨⎪⎩
(L(x),R(x)] if x ∈ (R(z1), L(z2)],

(z1,R(z1)] if x ∈ (z1,R(z1)],

(L(z2), z2] if x ∈ (L(z2), z2].
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In the special case of right truncation

� = (−∞, z]

and we will use the following notations for the corresponding short-cut covering ��(x), x ∈ �, and related objects

�z(x) = ��(x),

�z = �(t, z) = sup{k : yk�z}, zz = z(t, z) = Y�z := L(z),

Lz(x) = L�(x), Rz(x) = R�(x). (5)

The short-cut covering �z(x) = (Lz(x),Rz(x)], x ∈ �, is defined as follows:

�z(x) = (Lz(x),Rz(x)] =
{
(L(x),R(x)] if x ∈ (a, L(z)],

(L(z), z] if x ∈ (L(z), z].

2.3. The mechanism of censoring and truncation

Themechanism of censoring and truncating of a randomvariable X is defined as follows. Let X be a randomvariable,�=(Z1, Z2]
be a random interval, �(x) = (L(x),R(x)], x ∈ R, be a random covering, generated by a partition � defined in (1).

We suppose that the random covering �(·), the random variable X and the random interval � are independent, but we do not
have complete observations. More precisely, we suppose that the random vector (X, Z1, Z2) is partly observable only in the case
where (L(X),R(X)] ⊂ �:

Z1�L(X) <R(X)�Z2.

In that case the available observations are the interval (L(X),R(X)] of the covering �(·), which contains X, and the random interval
�∗ = (R(Z1), L(Z2)]. When (L(X),R(X)] /⊂ � we do not have any observation.

Let us define

(1) Conditionally on a fixed value t of � the random interval � is taken from the truncated distribution

Pt{A} = P{� ∈ A| the interval [Z1, Z2] contains at least two points of tt}.

In other words, conditionally on fixed values of � = t the random vector Z = (Z1, Z2) is taken from the truncated distribution

Pt{B} = P{Z ∈ B|z1(t, Z1) < z2(t, Z2)}.

(2) Conditionally on a fixed value of � = t and � = � = (z1, z2], the random variable X is taken from the truncated distribution

Pt,�{C} = P{X ∈ C|X ∈ (R(z1), L(z2)]}.

In other words conditionally on fixed values of � = t and Z1 = z1, Z2 = z2 the random variable X is taken from the truncated
distribution

P{C|t, z1, z2} = P{X ∈ C|X ∈ (z1(t, z1), z2(t, z2)]}. (6)

We consider now the simple case where for a random variable Z the random interval�= (−∞, Z], and use the notations that
were given in (5). We denote by Z the random variable

Z= z(�, Z).

Recall that the random covering �(·), the survival X and the truncating random variable Z are independent.

In this case, definition (6) above becomes: Conditionally on fixed values of � = t and Z = z the random variable X is taken from
the truncated distribution

P{C|t, z} = P{X ∈ C|X�z(t, z)}.
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3. The distribution associated with the random covering

Let �(x)= (L(x),R(x)], x ∈ R, be a simple random covering. The distribution Px of random vector �(x)= (L(x),R(x)) will be called
the distribution, associated with the random covering �(x).

We assume that for all x the distribution Px has density with respect to Lebesgue measure �2 on the plane R2,

rx(u,v) = dPx
d�2 ,

and plan to prove in this case, that there exists a nonnegative function r(u,v) such that for all x

rx(u,v) = r(u,v)1(u,v](x) (a.s.)

The function r(u,v) will be called the baseline density of the simple random covering �(x). It is clear that the function r(u,v) is the
density of a �-finite measure, but, for all x, the function r(u,v)1(u,v](x) is the density of a probability measure.

It is clear that for all x

rx(u,v) = rx(u,v)1(u,v](x).

For positive x < y and nonnegative measurable function �(u,v) such that

�(u,v) = 0 if u< x�v< y or x�u< y�v. (7)

Condition (7) is equivalent to the condition (on function �)

�(u,v)1(u,v](x) = �(u,v)1(u,v](y).

Therefore

E�(L(x),R(x)) = E�(L(x),R(x))
∑
k

1(Yk ,Yk+1](x)

=
∑
k

E�(Yj,Yj+1)1(Yj ,Yj+1](x) =
∑
k

E�(Yj,Yj+1)1(Yj ,Yj+1](y)

= E�(L(x),R(x))
∑
k

1(Yk ,Yk+1](y) = E�(L(y),R(y)).

Thus, under condition (7) on function �∫ ∫
u<v

�(u,v)rx(u,v) dudv =
∫ ∫

u<v
�(u,v)ry(u,v) dudv,

and we obtain for all u< x�y�v

rx(u,v) = ry(u,v). (8)

From (8) we conclude that there exists a nonnegative function r(u,v), whose support is the set {(u,v) : u<v}, and such that for x

rx(u,v) = r(u,v)1(u,v](x) (a.s.).

It is easy to see that the baseline density r(u,v) depends only on the joint distributions of vectors (Yj,Yj+1).

Lemma 1. The measure Px is absolutely continuous with respect to the Lebesgue measure for all x if and only if

(i) for all j the distribution of the vector (Yj,Yj+1) has density rj(u,v) with respect to the Lebesgue measure,
(ii) the series

∑
j r

j(u,v) converges a.s. to a function r(u,v),
(iii) the function r(u,v) satisfies the following condition: for all x

rx(u,v) = r(u,v)1(u,v](x).

Proof. Suppose that for all x the distribution Px has density rx(u,v). Let �(u,v) be a nonnegative function, then for all j

E�(Yj,Yj+1)1(Yj ,Yj+1](x)�E�(L(x),R(x))

=
∫ ∫

�(u,v)r(u,v)1(u,v](x) dudv.
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Therefore, for all x the distribution of the vector (Yj,Yj+1)1(Yj ,Yj+1](x) has a density. Hence, the distribution of the vector (Yj,Yj+1)

also has a density rj(u,v).
We have

E�(L(x),R(x)) =
∑
j

E�(Yj,Yj+1)1(Yj ,Yj+1](x)

=
∑
j

∫ ∫
�(u,v)rj(u,v)1(u,v](x) dudv

=
∫ ∫

�(u,v)

⎧⎨⎩∑
j

rj(u,v)1(u,v](x)

⎫⎬⎭ dudv.

So, we obtain

r(u,v) =
∑
j

rj(u,v) (a.s.).

Now suppose that (i), (ii) are fulfilled. Then we obtain for a nonnegative measurable function �(u,v) (by the same way as
above)

E�(L(x),R(x)) =
∫ ∫

�(u,v)

⎧⎨⎩∑
j

rj(u,v)

⎫⎬⎭ 1(u,v](x) dudv.

From this equality we conclude that the series

r(u,v) =
∑
j

rj(u,v) <∞ (a.s.)

and

rx(u,v) = r(u,v)1(u,v](x). �

4. The distribution of the random vector (L(x),R(x), L(z),R(z))

From now on we concentrate on the case of right truncation. Due to censoring by the partition t, z is not observed.
Instead we have ]L(z);R(z)] 	 z, and only L(z) is observed. Now for x < z we denote by Px,z the distribution of the random
vector (L(x),R(x), L(z),R(z)).

Denote by �n the Lebesgue measure on Rn. The distribution Px,z is not absolutely continuous with respect to the suppress on
�4. Denote by 	 the measure, which is defined for continuous nonnegative functions �(s) = �(s1, s2, s3, s4) by the relation∫ ∫ ∫ ∫

�(s) d	 =
∫ ∫

�(s1, s2, s1, s2) ds1 ds2

+
∫ ∫ ∫

�(s1, s2, s2, s4) ds1 ds2 ds4 +
∫ ∫ ∫ ∫

�(s1, s2, s3, s4) ds1 ds2 ds3 ds4.

We suppose that the distribution Px,z is absolutely continuous with respect to the measure 	 and denote its density by qx,z(s):

qx,z(s) = qx,z(s1, s2, s3, s4) = dPx,z
d	

.

We suppose that for all n,m>0 the random vector (Y−m, . . . ,Yn) has a density with respect to the corresponding Lebesgue
measure. For i + 1 < j, let function

ri,j(y1, y2, y3, y4) be the density of random vector (Yi,Yi+1,Yj,Yj+1),

rj(y1, y2, y3) be the density of the random vector (Yj−1,Yj,Yj+1),

and

rj(y1, y2) be the density of the random vector (Yj,Yj+1).

We assume that

d4(y1, y2, y3, y4) =
∑
i,j:

i+1<j

rij(y1, y2, y3, y4) <∞ (�4-a.s.),
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d3(s1, s2, s3) =
∑
j

rj(s) <∞ (�3-a.s.),

and

d2(y1, y2) =
∑
j

rj(y1, y2) <∞ (�2-a.s.).

For a nonnegative function �(x), x = (x1, x2, x3, x4) and x < z we have

E�(L(x),R(x), L(z),R(z)) = E
∑
i,j

�(Yi,Yi+1,Yj,Yj+1)1(Yi ,Yi+1](x)1(Yj ,Yj+1](z)

=
∑
j

E�(Yj,Yj+1,Yj,Yj+1)1(Yj ,Yj+1](x)1(Yj ,Yj+1](z)

+
∑
j

E�(Yj−1,Yj,Yj,Yj+1)1(Yj−1,Yj](x)1(Yj ,Yj+1](z)

+
∑
i,j:

i+1<j

E�(Yi,Yi+1,Yj,Yj+1)1(Yi ,Yi+1](x)1(Yj ,Yj+1](z).

Thus,

E�(L(x),R(x), L(z),R(z))

= +
∫ ∫

�(s1, s2, s1, s2)d2(s1, s2)1(s1,s2](x)1(s1,s2](z) ds1 ds2

+
∫ ∫ ∫

�(s1, s2, s2, s3)d3(s1, s2, s3)1(s1,s2](x)1(s2,s3](z) ds1 ds2 ds3∫ ∫ ∫ ∫
�(s1, s2, s3, s4)d4(s1, s2, s3, s4)1(s1,s2](x)1(s3,s4](z) ds1 ds2 ds3 ds4.

If we define a 	-measurable function d(s|x, z), s = (s1, s2, s3, s4), by

d(s|x, z) = 1(s1,s2](x)d∗(s|z),

where

d∗(s|z) =

⎧⎪⎪⎨⎪⎪⎩
d2(s1, s2)1(s1,s2](z) if s1 = s3 < s2 = s4,
d3(s1, s2, s4)1(s2,s4](z) if s1 < s2 = s3 < s4,
d4(s1, s2, s3, s4)1(s3,s4](z) if s1 < s2 < s3 < s4,
0 else

(9)

then we obtain for x < z

E�(L(x),R(x), L(z),R(z)) =
∫ ∫ ∫ ∫

�(s)d(s|x, z) d	,

and therefore

qx,z(s1, s2, s3, s4) = 1(s1,s2](x)d∗(s1, s2, s3, s4|z). (10)

5. The distribution of the random vector (L(X),R(X), L(Z),R(Z))

For the right truncated density function f (x) we shall use the following notation:

fa(x) = f (x)∫
u� a f (u) du

1(−∞,a](x).

Now we suppose that for fixed z and fixed value of � = t, the random variable X is taken from the truncated distribution with
density fz(x). Here z= z(t, z) = L(z). It follows from (10) that in that case the distribution Pz of random vector (L(X),R(X), L(z),R(z))
has density (with respect to the measure 	) q(s1, s2, s3, s4|z),

q(s1, s2,u,v|z) =
∫

qx,z(s1, s2,u,v)fu(x) dx,
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and (see (9))

q(s1, s2,u,v|z) =
∫ s2

s1
fu(x) dx × d∗(s1, s2, s3, s4|z),

where for s = (s1, s2, s3, s4)

d∗(s|z) =

⎧⎪⎨⎪⎩
d3(s1, s2, s4)1(s2,s4](z) if s1 < s2 = s3 < s4,

d4(s1, s2, s3, s4)1(s3,s4](z) if s1 < s2 < s3 < s4,

0 else.

Therefore the distribution Pz is absolutely continuouswith respect to themeasure 	∗, which is defined for continuous nonnegative
functions �(s) by the relation∫ ∫ ∫ ∫

�(s) d	∗ =
∫ ∫ ∫

�(s1, s2, s2, s4) ds1 ds2 d4 +
∫ ∫ ∫ ∫

�(s1, s2, s3, s4) ds1 ds2 ds3 ds4,

and

dPz
d	∗

= q(s|z).

Now suppose that Z is a random variable with density g, which is independent from the random covering �(·). For fixed
values Z = z and � = t, random variable X is taken from the truncated distribution with density fz(x), z = z(t, z) = L(z). Denote by
P∗ the distribution of the random vector (L(X),R(X), L(Z),R(Z)). It is clear that the distribution P∗ has density q(s) with respect to
the measure 	∗,

q(s1, s2,u, s4) =
∫ s2

s1
fu(x) dx ×

∫
d∗(s1, s2,u, s4|z)g(z) dz

=
∫ s2

s1
fu(x) dx × d(s1, s2,u, s4).

Now consider the random vector W = (L(X),R(X), L(Z)). Let 	∗∗ be the measure on R3, defined for continuous nonnegative
functions � by∫ ∫ ∫

�(s1, s2, s3) d	 =
∫ ∫

�(s1, s2, s2) ds1 ds2 +
∫ ∫ ∫

�(s1, s2, s3) ds1 ds2 ds3,

It is clear that the distribution PW of random vectorW is absolutely continuous with respect to the measure 	∗∗ and

p(y) = p(y1, y2, y3) = dPz
d	∗∗ =

∫
q(y1, y2, y3,u) du.

Therefore,

p(u,v, z) =
∫ v

u
fz(x) dx × r(u,v, z),

where

r(u,v, z) =
∫
d(u,v, z, x) dx.

6. Estimation of the density of survival

The problem that we are faced with could be formulated as follows. Let W ,W1, . . . ,Wn be i.i.d. random vectors, W =
(L(X),R(X), L(Z)), with unknown density

p(u,v,w) = r(u,v,w) ×
∫ v
u f (x) dx∫

x�w f (x) dx
. (11)
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We assume that the baseline density r and density f belong to given sets G andF correspondingly, and specify these sets later.
We set


(f ;u,v,w) =
∫ v
u f (x) dx∫

x�w f (x) dx
,

P= {p : p = r
(f ; ·), (r, f ) ∈ G×F}. (12)

Denote by Pn the empirical measure,

Pn{A} = 1
n

n∑
j=1

1A(Wj).

Consider the maximum likelihood estimator p̂n for unknown p ∈ P,∫
ln p̂n dPn = max

q∈P

∫
ln qdPn. (13)

It is clear that p̂n = r̂n × 
(̂fn; ·), where r̂n and f̂n are maximum likelihood estimators for r and f,∫
ln
(̂fn; ·) dPn = max

q∈F

∫
ln
(q; ·) dPn,

∫
ln r̂n dPn = max

q∈G

∫
ln qdPn.

We are interested in the estimation of f in the presence of the nuisance parameter r. First, we need to define the Hellinger distance
between two densities f and g.

Let (Y,B,�) be a measurable space and Y1, . . . ,Yn be i.i.d. random elements of Y with common distribution P ∈ P and
density f,

f (y) = dP
d�

(y), f ∈ F=
{
f : f = dP

d�
, for some P ∈ P

}
.

For nonnegative f , g let h(f , g) be the Hellinger distance,

h2(f , g) = 1
2

∫
Y
(
√
f − √

g)2 d�.

For a pair of nonnegative functions gL�gR denote by V(gL, gR) the set

V(gL, gR) = {g : gL�g�gR}.

Denote by N[ ](�,F,h(�)) the smallest value ofm such that

F ⊂
m⋃
j=1

V(gLj , g
R
j ) where h(gLj , g

R
j )��, j = 1, . . . ,m.

The bracketing Hellinger �-entropy H(�,F,h(�)) is defined as

H(�,F,h(�)) = lnN[ ](�,F,h(�)).

The bracketing Hellinger �-entropy H(�,F, L2(�)) in relation to the usual L2 norm with respect to the measure � is defined as

H(�,F, L2(�)) = lnN[ ](�,F, L2(�)).

Theorem 1 (Wong and Shen). Let F be a set of densities on a measurable space (Y,B,�) and Yn = (Y1, . . . ,Yn) a random sample
with density f ∈ F. The bracketing Hellinger s-entropy ofF is denoted by H(s,F,h(�)) and � is a positive number assumed to verify,
for some constant c:∫ �

�2
H1/2(s,F,h(�)) ds�c�2

√
n. (14)
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Then there exist positive constants c1, c2,C such that

P

⎧⎪⎪⎨⎪⎪⎩ sup
h(g,f )� �,

g∈F

n∏
j=1

g(Yj)
f (Yj)

� exp{−c1n�2}

⎫⎪⎪⎬⎪⎪⎭ �C exp{−c2n�2}. (15)

Corollary 1. Under the assumptions of Theorem 1, the maximum likelihood estimator f̂n of f verifies:

P{h(f̂n, f )��}�C exp{−c2n�2}. (16)

Proof. Let A = {Yn : h(f̂n, f )��}. f̃n is defined as the “maximum likelihood estimator chosen inF outside the Hellinger ball with
center f and radius �”:

n∏
j=1

f̃n(Yj)
f (Yj)

�

n∏
j=1

g(Yj)
f (Yj)

∀g ∈ F ∩ {h(f , g)��}.

On A, f̃n ≡ f̂n so that, on A we have

n∏
j=1

f̃n(Yj)
f (Yj)

=
n∏

j=1

f̂n(Yj)
f (Yj)

�1� exp(−c1n�2).

As a consequence

A ⊂ B =
⎧⎨⎩Yn :

n∏
j=1

f̃n(Yj)
f (Yj)

� exp(−c1n�2)

⎫⎬⎭ .

Thus P(A)�P(B) and finally, due to Theorem 1

P{h(f̂n, f )��}�C exp{−c2n�2}. (17)

which proves the corollary. �

Remark. In order to be able to prove consistency, we need that the smallest � verifying (14), as a function of n, tends to 0 when
n tends to ∞ and that n�2 tends to ∞, which is automatically verified as soon as H(�,F,h(�)) → ∞ when � → 0. Then we have
consistency together with the rate of convergence.

Consider the following definition and theorem which can be found in van der Vaart and Wellner (2000, pp. 154–155, 157),
respectively.

Definition 1. Let  be a bounded set in Rd, 0 <��1, r ∈ N, and � = r + �.
ThenC�

M0
is the set of all functions from  onto R that possess uniformly bounded partial derivatives up to order r and whose

highest partial derivatives are Lipschitz functions of order �. More precisely, for any k = (k1, . . . , kd)

‖g‖� = max∑
ki � r

sup
x

|Dkg(x)| + max∑
ki=r

sup
x,y

|Dkg(x) − Dkg(y)|
‖x − y‖� �M0, (18)

where the supremum is taken over all x, y in the interior of  with x� y.

Theorem 2. Let  be a bounded convex subset of Rd with nonempty interior. There exists a constant K0 depending on �, diam(),
p, M0 and d such that

log(N[ ](�,C
�
M0

, Lp(Q))�K0

(
1
�

)d/�
(19)

for every p�1, � >0 and probability measure Q.

We will use the above definition to impose a smoothness condition on our set of functions f or �(f ) which along with the
above theorem and the following lemma will allow us to give bounds on the covering numbers of these sets.
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Lemma 2. We assume that for the space P defined in (12) the function r is bounded by a constant r0 >0 and that the space F of
densities with respect to Lebesgue measure � is uniformly bounded above and below:

F= {f : f has compact support  and 0 < cl� f �cu <∞}.

Then if

H(�,F, L2(�)) = h0 <∞ (20)

there exist constants c′ and c′′ such that

H(c′�,F,h(�))�h0, (21)

H(c′′�,P,h(	∗∗))�h0. (22)

Proof. In order to prove (21) and (22) we shall show that to each bracket of size � in the space F with respect to the Hellinger
distance corresponds a bracket of size c′� for L2 distance inF and a bracket of size c′′� in the spacePwith respect to the Hellinger
distance. The first result is a consequence of the equivalence of the L2 and Hellinger distances in the spaceF, due to the property
of uniform bi-boundedness ofF. And as we show below that this property holds also forPwe get the second result.

Let us rewrite p(u,v,w) as

p(u,v,w) = r∗(u,v,w) × 
∗(f ;u,v,w),

r∗(u,v,w) = v − u
w

r(u,v,w),


∗(f ;u,v,w) =

∫ v
u f (x) dx
v − u∫ w

0 f (x) dx
w

.

The fact thatF is bi-bounded, 0 < cl < f < cu <∞ for any f ∈ F, implies the same property for the setF∗ = {
∗(f ); f ∈ F}:

cl
cu

<
∗(f ) <
cu
cl
, f ∈ F. (23)

Thus, the Hellinger distance is equivalent to the L2 distance both forF and forF∗, as

4clh
2(f , g)�L2(f , g) =

∫
(f − g)2 d� =

∫
(
√
f − √

g)2(
√
f + √

g)2 d��4cuh2(f , g).

Let D = 
∗(f ) − 
∗(g). Using a/c − b/d = (a − b)/c + b(1/c − 1/d), we get

D = w
v − u

∫ v
u (f − g)∫ w

0 f
+ w

v − u

(∫ v

u
g
) ∫ w

0 (g − f )∫ w
0 f

∫ w
0 g

so that

|D|�
∫ v
u

|f − g|
v − u∫ w
0

f
w

+
∫ v

u

g
(v − u)

∫ w
0

|f − g|
w∫ w

0
f
w

∫ w
0

g
w

.

We now need to show that �(f , g) = ∫
D2(u,v,w) dudvdw tends to 0 if h2(f , g) tends to 0.

Let Mf (x) be defined for any real function f as Mf (x) = supI	x
∫
I |f (u)|du/|I|, then we know Stein (1993) that

∫
|Mf (u)|p du�C(p)p

∫
|f (u)|p du, ∀p >1. (24)
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Applying (24) to p=2 with function f replaced by f − g, f and g inF, we get that the L22 norm of D, denoted �(f , g) is such that:

�(f , g) =
∫
0<u<v�w<1

D2(u,v,w) dudvdw

� 2

[
1
c2l

∫ 1

0
(M(f − g)(u))2 du + c2u

c4l

∫ 1

0
(M(f − g)(w))2 dw

]

�
2c2l + 2c2u

c4l
C(2)2 ×

∫ 1

0
((f − g)(x))2 dx

�
2c2l + 2c2u

c4l
C(2)2 × 4cuh2(f , g).

Since the function r is assumed to be bounded by r0 >0, we have that

h2(pr,f ,pr,g)� r0h2(
∗(f ),
∗(g))

� r04
cu
cl

�(f , g)

� r0
16c2u(2c

2
l + 2c2u) C(2)

2

c5l
h2(f , g).

In order to complete the proof we have to follow the above steps for f = fR and g = fL for fL� f � fR and h2(fL, fR)��. Actually,
(fL ∗ =max(fL, cl), fR ∗ =min(fR, cu)) is also an �-bracketing interval for f. Then we obtain that h2(pr,fL∗, pr,fR∗)�c′′� as desired. �

Lemma 3. Let us assume that f ∈ F ⊂ C�
M0

()where = [0; b], b >0 andF is a set of densities on with respect to Lebesgue measure
�. F is also assumed to be uniformly bounded below by some cl >0. Moreover, the censoring and truncating law, with density r with
respect to 	∗∗ lies in G such that

∀� >0 and ∀x ∈ [�; b], inf
r∈G

∫
0�u<v<w,v−u� �

r(u,v,w) d	∗∗(u,v,w) >0. (25)

Then if h2(f1, f2) >0, we have

h2(pr1,f1 ,pr2,f2 ) >0. (26)

Proof. Let us assume that 2h2(f1, f2)�� >0. Then there exists at least one x0 ∈ [0, b] such that |
√
f1(x0) −

√
f2(x0)| >

√
�/(2

√
b).

As f1 and f2 are in C�
M0

with � > 1
2 , there exist a constant cm >0, such that

|f1(x) − f1(x + t)|�cmt�

uniformly onF, where � = r + �, r ∈ N, 0 <��1. So,

|f1 − f2| = |
√
f1 −

√
f2|(

√
f1 +

√
f2) > |

√
f1 −

√
f2|2

√
cl >

√
cl/b

√
�.

Moreover, there exists t0 >0 derived below, such that

∀t ∈ [−t0 t0], |f1(x0 + t) − f1(x0)|�cmt� < 1
4 {

√
cl/b

√
�}.

This last inequality holds as soon as

t0 =
[ √

cl�

4
√
bcm

]1/�
.

Then, uniformly on [x0 − t0; x0 + t0], |f1(x) − f2(x)| >
√
cl�/2b.

Let us denote for convenience

Ni =
1

v − u

∫ v

u
fi(x) dx, Di =

1
w

∫ w

0
fi(x) dx, i = 1, 2
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so that

|(
∗(f1) − 
∗(f2))| =
∣∣∣∣N1

D1
− N2

D2

∣∣∣∣ . (27)

Taking care first of the numerators Ni, depending on u and v only, we have that on 0 < x0 − t0 <u<v< x0 + t0, where the difference
f1 − f2 has always the same sign, the following inequality holds:

|N1 − N2| = 1
v − u

∫ v

u
|f2 − f1| >

1
2

√
cl�
b

. (28)

Now, taking care of the denominators Di, depending on w alone, there exists a b0 < b such that

∀w�b0, D1�1 − �1, D2�1 − �2,

where

�1 < ��, �2 < ��

for some � >0.
Then, on the set

B� = {0 < x0 − t0�u<v�x0 + t0 < b0 < b} (29)

we have the following inequality, due to (28):

|(
∗(f1) − 
∗(f2))| =
∣∣∣∣N1

D1
− N2

D2

∣∣∣∣ > |N1 − N2| − max(N1�2,N2�1) >
1
2

√
cl�
b

− cu��. (30)

It suffices then to take � > 1
2 in order that the right term of the inequality is strictly positive for sufficiently small �. Then we

can say that

2h2(
∗(f1),
∗(f2))�
∫
B�

(
√


∗(f1) −
√


∗(f2))
2 d�3

� (1/16)(c2l /bcu)(1 − 2
√
b/clcu�

�−1/2)2 × �3(B�)�

> 0.

We thus proved that h2(
∗(f1),
∗(f2) cannot be equal to 0, as soon as h2(f1, f2) >0. Now, due to assumption (25) the same result
holds for h2(r∗
∗(f1), r∗
∗(f2)). �

Remark. If we do not have a compact support forF, we need thatF be uniformly integrable on R, that is

∀� >0, ∃0 < b0 <∞ such that sup
f∈F

P(X >b0) <�

in order to get the same result.

Remark. Note that a sufficient assumption for the condition (25) is that r∗ is a.s. positive with respect to the measure 	∗∗.

Theorem 3. Suppose that the parameter of interest, that is, the true density f, with respect to Lebesgue measure, of the survival time
X, belongs to the space

F= {f : f ∈ C�
M0

with compact support  and 0 < cl� f �cu <∞} (31)

with � > 1
2 . Also, suppose that the function r which describes the censoring and truncation mechanism is known and bounded by a

constant r0 >0. Then the nonparametricmaximum likelihood estimator f̂n is consistent in the Hellinger distance for the density f, namely,
for any � >0

sup
p=pr,f ∈P

Pp{h(̂fn, f ) > �} → 0 as n → ∞.

More specifically, the rate of convergence is given by

sup
p=pr,f ∈P

Pp{h(̂fn, f ) >n−�/(2�+1)}�C exp{−c2n1/(2�+1)}.
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Proof. By Theorem 2 and Lemma 2 we have that

log(N[ ](�,F, L2(�))�K0

(
1
�

)1/�

or equivalently

log(N[ ](c
′�,F,h(�))�K0

(
1
�

)1/�

or

log(N[ ](c
′′�,P,h(	∗∗))�K0

(
1
�

)1/�
. (32)

By Theorem 1, Corollary 1 and Lemma 3 we have the result of consistency along with the rate of the convergence as long as
we verify that the smallest � that satisfies (14), as a function of n, tends to 0 when n tends to ∞ and that n�2 tends to ∞.

More specifically, in our case we have

∫ �

�2
H1/2(s,P,h(	∗∗)) ds�

∫ �

�2

√
K0

(
1
s

)1/2�
ds (33)

=
√
K0

2�
2� − 1

(�1−1/2� − �2−1/�)�c�2
√
n (34)

which provides for the n that

√
n�C0(�−1−1/2� − �−1/�)

with � > 1
2 . This implies that the smallest � for which (14) holds is as a function of n given as

� = C0n−�/(2�+1)

which converges to 0 as n → ∞. �

Also, n�2 = C0n1−2�/(2�+1) → ∞ and that proves the desired consistency and provides the rate of convergence.

7. Example

In this section we will provide an example in order to illustrate the theoretical results provided in the previous sections. We
consider as the total interval of observation time the interval [0, 1]. We also consider the case where the censoring mechanism
{Yj, j=1, . . . ,K}, where K is considered at first fixed, is represented in the form of an ordered sample of size K from the Uniform(0,1)
distribution. At the same time, the right-truncating variable Z follows an independent Uniform(0,M) distribution where M>1.
The survival time X follows a distribution with unknown density f (x), x ∈ [0, 1] with respect to the Lebesgue measure on R+,
which we assume to belong to the space F defined in (31). What we observe is W1, . . . ,Wn, a sample of i.i.d. random vectors,
whereW = (L(X),R(X), L(Z)), with density

p(u,v,w) = r(u,v,w) ×
∫ v
u f (x) dx∫

x�w f (x) dx
.

We would like to estimate fwhile r(u,v,w) is known and describes the censoring and truncating mechanism, which we chose
to fix at a first stage. We could also have a family of densities r if K is random and follows a Poisson(�) where 2 <� <K0. We now
have to compute r(u,v,w) for K fixed.

Lemma 4. For the observational scheme described above, the density r(u,v,w) of the censoring and truncating mechanism, has two
parts, one which is absolutely continuous with respect to �3, denoted by r3, and one that is absolutely continuous with respect to �2,
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denoted by r2 which are given as

r3(u,v,w) = K(K − 1){(u + 1 − v)K−2 − (u + w − v)K−2 + (K − 2)(M − 1)(u + w − v)K−3}/M,

0�u<v<w�1,

r2(u,v) = K{(u + 1 − v)K−1 − uK−1) + (K − 1)(M − 1)uK−2}/M, 0�u<v�1.

Proof. For any measurable function �(u,v,w), 	∗∗ denotes the following measure:∫
�(u,v,w) d	∗∗ =

∫
�(u,v,w) d�3(u,v,w) +

∫
�(u,v,v) d�2(u,v).

The measure Q is absolutely continuous with respect to 	∗∗ and one has∫
�(u,v,w) dQ =

∫
�(u,v,w)r3(u,v,w) d�3(u,v,w) +

∫
�(u,v,v)r2(u,v) d�

2(u,v). (35)

Let us first compute r3. The fact that v is strictly smaller than w means that we have to consider the density
rYj ,Yj+1,Yk ,Yk+1,Z(u,v,w,w′, z) with k > j + 1:

rYj ,Yj+1,Yk ,Yk+1,Z(u,v,w,w′, z) = 1
M

K!
(j − 1)!(k − j − 2)!(K − k − 1)!

uj−1(w − v)k−j−2(1 − w′)K−k−1∗
1{0 <u <v<w< z <w′ <M}

which has to be integrated with respect to w′ and z, and summed over all K − 1�k > j + 1 and j from 1 to K − 3. This is done
hereafter and given in Eq. (36). Doing so, however, we miss the borderline term where Z lies between YK , the last time we look
at a patient, and M. Adding also this part (37) to (36), leads to the final value for r3 given in (38).

Integration with respect to z and w′ gives

rYj ,Yj+1,Yk (u,v,w) = 1
M

K!
(j − 1)!(k − j − 2)!(K − k − 1)!

uj−1(w − v)k−j−2
∫ 1

w
(1 − w′)K−k−1(w′ − w) dw′

and consequently,

rYj ,Yj+1,Yk (u,v,w) = 1
M

K!
(j − 1)!(k − j − 2)!(K − k + 1)!

uj−1(w − v)k−j−2(1 − w)K−k+1.

We need now to sum rYj ,Yj+1,Yk first over k and then over j. For the first sum we have (apart fromM in the denominator)

uj−1

(j − 1)!

K−1∑
k=j+2

K!
(k − j − 2)!(K − k + 1)!

(w − v)k−j−2(1 − w)K−k+1

which with the changes K ′ = K − 1 and k′ = k − j − 2 becomes

uj−1

(j − 1)!

K ′−j−2∑
k′=0

K ′ + 1!
k′!(K ′ − j − k′)!

(w − v)k
′
(1 − w)K

′−j−k′

= uj−1(K ′ + 1)!
(j − 1)!(K ′ − j)!

{(1 − v)K
′−j − (K ′ − j)(w − v)K

′−j−1(1 − w) − (w − v)K
′−j}.

Then, changing again to K = K ′ + 1 and summing for j from 1 to K − 3 we obtain the sum of three terms which we will denote
by S1, S2 and S3. First,

S1 =
K−3∑
j=1

K!
(j − 1)!(K − 1 − j)!

uj−1(1 − v)K−1−j

which with the changes K ′ = K + 3 and j′ = j − 1 becomes

K ′−1∑
j′=0

(K ′ + 3)!
j′!(K ′ + 1 − j′)!

uj
′
(1 − v)K

′+1−j′

= (K ′ + 3)(K ′ + 2){(u + 1 − v)K
′+1 − uK

′+1 − (K ′ + 1)uK
′
(1 − v)}

= K(K − 1){(u + 1 − v)K−2 − uK−2 − (K − 2)uK−3(1 − v)}.
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The second term

S2 =
K−3∑
j=1

K!
(j − 1)!(K − 1 − j)!

(K − 1 − j)uj−1(1 − w)(w − v)K−j−2

with the changes K ′ = K + 3 and j′ = j − 1 becomes

(1 − w)
K ′−1∑
j′=0

(K ′ + 3)!
j′!(K ′ − j′)!

uj
′
(w − v)(K

′−j′) = (K ′ + 3)(K ′ + 2)(K ′ + 1)(1 − w){(u + w − v)K
′ − uK

′ }

= K(K − 1)(K − 2)(1 − w){(u + w − v)K−3 − uK−3}.

The third term

S3 =
K−3∑
j=1

K!
(j − 1)!(K − 1 − j)!

uj−1(w − v)K−j−1

with the changes K ′ = K + 3 and j′ = j − 1 becomes

K ′−1∑
j′=0

(K ′ + 3)!
j′!(K ′ + 1 − j′)!

uj
′
(w − v)(K

′+1−j′)

= (K ′ + 3)(K ′ + 2){(u + w − v)K
′+1 − uK

′+1 − uK
′
(K ′ + 1)(w − v)}

= K(K − 1){(u + w − v)K−2 − uK−2 − (K − 2)uK−3(w − v)}.

After some simplifications, (S1 + S2 + S3)/M becomes

K(K − 1){(u + 1 − v)K−2 − (u + w − v)K−2 − (K − 2)(u + w − v)K−3(1 − w)}/M (36)

for 0�u<v<w�1.
We now add the borderline case where Yk coincides with YK and the truncation variable Z falls within the interval (YK ,M).

The density of (Yj,Yj+1,YK , Z) is given as

rYj ,Yj+1,YK ,Z(u,v,w, z) = 1
M

K!
(j − 1)!(K − j − 2)!

uj−1(w − v)K−j−2.

Then, the density rYj ,Yj+1,YK (u,v,w) is equal to

1
M

K!
(j − 1)!(K − j − 2)!

uj−1(w − v)K−j−2(M − w).

Now we need to sum rYj ,Yj+1,YK over j from 1 to K − 2. Then, by making also the changes K ′ = K − 2 and j′ = j − 1 we get

1
M

(M − w)
K ′−1∑
j′=0

(K ′ + 2)!
j′!(K ′ − j′ − 1)!

uj
′
(w − v)K

′−j′−1 = 1
M

(K ′ + 2)(K ′ + 1)(K ′)(M − w)(u + w − v)K
′−1

= 1
M

K(K − 1)(K − 2)(M − w)(u + w − v)K−3. (37)

Finally, combining (36) and (37) we obtain r3(u,v,w) which is absolutely continuous with respect to �3 and is given as

r3 = K(K − 1){(u + 1 − v)K−2 − (u + w − v)K−2 + (K − 2)(M − 1)(u + w − v)K−3}/M (38)

for 0�u<v<w�1.
We compute now r2, corresponding to the case where L(Z) coincides with R(X), so thatw=v. For this case we need to calculate

the common density of (Yj,Yj+1, Z,Yj+2) as Yj+1 coincides with Yk and Z falls into the interval (Yj+1,Yj+2). So,

rYj ,Yj+1,Yj+2,Z(u,v,w, z) = 1
M

K!
(j − 1)!(K − j − 2)!

uj−1(1 − w)K−j−2

and

rYj ,Yj+1 (u,v) = 1
M

K!
(j − 1)!(K − j − 2)!

uj−1
∫ 1

v
(1 − w)K−j−2(w − v) dw
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and consequently,

rYj ,Yj+1 (u,v) = 1
M

K!
(j − 1)!(K − j)!

uj−1(1 − v)K−j.

Now we need to sum over j from 1 to K − 2. By also making the changes K ′ = K − 1 and j′ = j − 1 we get

1
M

K
K ′−2∑
j′=0

(K ′)!
j′!(K ′ − j′)!

uj
′
(1 − v)K

′−j′ = K{(u + 1 − v)K−1 − (K − 1)uK−2(1 − v) − uK−1} (39)

for 0�u<v�1.
Again, we have to consider the special case where Yj+1 coincides with YK and therefore Z falls within the interval (YK ,M).

The density rYK−1,YK ,Z(u,v, z) is given as

1
M

K!
(K − 2)!

uK−2

and consequently,

rYK−1,YK (u,v) = 1
M

K(K − 1)uK−2(M − v) (40)

for 0�u<v�1.
Finally, combining (39) and (40) we obtain r2(u,v) which is absolutely continuous with respect to �2 and is given as

r2(u,v) = K{(u + 1 − v)K−1 − uK−1) + (K − 1)(M − 1)uK−2}/M (41)

for 0�u<v�1. �

The space

G= {r(u,v,w) defined by (38) and (41)} (42)

consists of only one element r, which is known, since K is fixed.
Note that all of the appropriate assumptions required for the consistency of the estimator of f hold for the case of this example.
First, by Eqs. (38), (41) we have

r3(u,v,w)�K(K − 1)[1 + (K − 2)(M − 1)],

r2(u,v)�K(1 + (K − 1)(M − 1)).

Thus r∗(u,v,w) = [(v − u)/w]r(u,v,w)� r(u,v,w) is bounded by r0 = K2(1 + (K − 1)(M − 1)) and our density r satisfies the
required condition. It is also clear by the definition of r that it satisfies the identifiability condition (25).
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